Core genome multilocus sequence typing (cgMLST) applicable to the monophyletic species complex.

Johanna Dabernig-Heinz, Gabriel E Wagner, Karola Prior, Michaela Lipp, Sabine Kienesberger, Werner Ruppitsch, Torunn G R��nning, Dag Harmsen, Ivo Steinmetz, Eva Leitner
Author Information
  1. Johanna Dabernig-Heinz: Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria. ORCID
  2. Gabriel E Wagner: Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria. ORCID
  3. Karola Prior: Department of Periodontology and Operative Dentistry, University Hospital M��nster, M��nster, Germany.
  4. Michaela Lipp: Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
  5. Sabine Kienesberger: Institute of Molecular Biosciences, University of Graz, Graz, Austria. ORCID
  6. Werner Ruppitsch: Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria. ORCID
  7. Torunn G R��nning: Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
  8. Dag Harmsen: Department of Periodontology and Operative Dentistry, University Hospital M��nster, M��nster, Germany.
  9. Ivo Steinmetz: Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria. ORCID
  10. Eva Leitner: Diagnostic and Research Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.

Abstract

The environmental bacterium displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.

Keywords

References

  1. Microb Genom. 2020 Apr;6(4): [PMID: 32149598]
  2. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  3. Bioinformatics. 2018 Jan 15;34(2):292-293 [PMID: 29028899]
  4. Antimicrob Agents Chemother. 2022 Mar 15;66(3):e0218321 [PMID: 35007133]
  5. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3774-3783 [PMID: 30808763]
  6. Antimicrob Agents Chemother. 2005 Aug;49(8):3453-62 [PMID: 16048960]
  7. Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14753-14757 [PMID: 28977734]
  8. Antimicrob Agents Chemother. 2012 Apr;56(4):2158-61 [PMID: 22290949]
  9. Front Microbiol. 2018 Sep 11;9:2170 [PMID: 30271396]
  10. Sci Rep. 2023 May 16;13(1):7893 [PMID: 37193703]
  11. Nat Rev Microbiol. 2013 Oct;11(10):728-36 [PMID: 23979428]
  12. Genome Biol. 2018 Oct 4;19(1):153 [PMID: 30286803]
  13. Microbiol Resour Announc. 2023 Apr 18;12(4):e0135022 [PMID: 36926996]
  14. BMC Infect Dis. 2022 Aug 24;22(1):704 [PMID: 36002802]
  15. Clin Microbiol Rev. 2022 Jan 19;35(1):e0000621 [PMID: 34851134]
  16. BMC Bioinformatics. 2008 Dec 16;9:539 [PMID: 19087322]
  17. Emerg Infect Dis. 2012 Aug;18(8):1242-7 [PMID: 22841005]
  18. Nat Biotechnol. 2013 Apr;31(4):294-6 [PMID: 23563421]
  19. J Biol Chem. 2017 Nov 24;292(47):19503-19520 [PMID: 28972161]
  20. J Clin Microbiol. 2021 Feb 18;59(3): [PMID: 33328175]
  21. J Clin Microbiol. 2015 Sep;53(9):2869-76 [PMID: 26135865]
  22. J Clin Microbiol. 2018 May 25;56(6): [PMID: 29618503]
  23. J Clin Microbiol. 2021 Jul 19;59(8):e0009321 [PMID: 33980649]
  24. J Pediatr Gastroenterol Nutr. 2022 Jan 1;74(1):e1-e7 [PMID: 34520403]
  25. Acta Paediatr. 2009 Oct;98(10):1582-8 [PMID: 19604166]
  26. Acta Paediatr. 2019 Jan;108(1):76-82 [PMID: 30238492]
  27. J Clin Microbiol. 2023 Apr 20;61(4):e0163122 [PMID: 36988494]
  28. Emerg Microbes Infect. 2020 Dec;9(1):1321-1329 [PMID: 32525754]
  29. Microb Genom. 2021 Jun;7(6): [PMID: 34142942]
  30. Genome Biol Evol. 2017 Feb 08;9(3):574-587 [PMID: 28177070]
  31. Genome Biol. 2019 Nov 5;20(1):232 [PMID: 31690338]
  32. Wellcome Open Res. 2018 Sep 24;3:124 [PMID: 30345391]
  33. Antimicrob Agents Chemother. 2015 Jan;59(1):714-6 [PMID: 25348541]
  34. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13181-6 [PMID: 25157164]

MeSH Term

Multilocus Sequence Typing
Klebsiella oxytoca
Humans
Genome, Bacterial
Phylogeny
Klebsiella Infections
Whole Genome Sequencing
Bacterial Typing Techniques
Genes, Essential
Reproducibility of Results