Deep Learning Models for Predicting Malignancy Risk in CT-Detected Pulmonary Nodules: A Systematic Review and Meta-analysis.

Wahyu Wulaningsih, Carmela Villamaria, Abdullah Akram, Janella Benemile, Filippo Croce, Johnathan Watkins
Author Information
  1. Wahyu Wulaningsih: The Royal Marsden, London, UK. wahyu.wulaningsih@nhs.net.
  2. Carmela Villamaria: Modamast Pte Ltd, Singapore, Singapore.
  3. Abdullah Akram: Modamast Pte Ltd, Singapore, Singapore.
  4. Janella Benemile: Modamast Pte Ltd, Singapore, Singapore.
  5. Filippo Croce: University Hospital of Wales, Cardiff, UK.
  6. Johnathan Watkins: Optellum Ltd, Oxford, UK. johnathan.watkins@optellum.com.

Abstract

BACKGROUND: There has been growing interest in using artificial intelligence/deep learning (DL) to help diagnose prevalent diseases earlier. In this study we sought to survey the landscape of externally validated DL-based computer-aided diagnostic (CADx) models, and assess their diagnostic performance for predicting the risk of malignancy in computed tomography (CT)-detected pulmonary nodules.
METHODS: An electronic search was performed in four databases (from inception to 10 August 2023). Studies were eligible if they were peer-reviewed experimental or observational articles comparing the diagnostic performance of externally validated DL-based CADx models with models widely used in clinical practice to predict the risk of malignancy. A bivariate random-effect approach for the meta-analysis on the included studies was used.
RESULTS: Seventeen studies were included, comprising 8553 participants and 9884 nodules. Pooled analyses showed DL-based CADx models were 11.6% more sensitive than physician judgement alone, and 14.5% more than clinical risk models alone. They had a similar pooled specificity to physician judgement alone [0.77 (95% CI 0.68-0.84) v 0.81 (95% CI 0.71-0.88)], and were 7.4% more specific than clinical risk models alone. They had superior pooled areas under the receiver operating curve (AUC), with relative pooled AUCs of 1.03 (95% CI 1.00-1.07) and 1.10 (95% CI 1.07-1.13) versus physician judgement and clinical risk models alone, respectively.
CONCLUSION: DL-based models are already used in clinical practice in certain settings for nodule management. Our results show their diagnostic performance potentially justifies wider, more routine deployment alongside experienced physician readers to help inform multidisciplinary team decision-making.

Keywords

References

  1. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  2. Nat Med. 2019 Jun;25(6):954-961 [PMID: 31110349]
  3. Ann Thorac Med. 2019 Oct-Dec;14(4):226-238 [PMID: 31620206]
  4. N Engl J Med. 2013 Sep 5;369(10):910-9 [PMID: 24004118]
  5. Asia Pac J Clin Oncol. 2021 Jun;17(3):216-221 [PMID: 32757455]
  6. JAMA. 2022 Jan 18;327(3):264-273 [PMID: 35040882]
  7. Thorax. 2015 Aug;70 Suppl 2:ii1-ii54 [PMID: 26082159]
  8. Lancet Oncol. 2021 Apr;22(4):e136-e172 [PMID: 33676609]
  9. Radiology. 2023 Apr;307(1):e221263 [PMID: 36511806]
  10. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  11. Lancet Digit Health. 2019 Nov;1(7):e353-e362 [PMID: 32864596]
  12. JAMA Netw Open. 2020 Feb 5;3(2):e1921221 [PMID: 32058555]
  13. Curr Opin Pulm Med. 2021 Jul 1;27(4):240-248 [PMID: 33973553]
  14. Comput Med Imaging Graph. 2021 Jun;90:101883 [PMID: 33895622]
  15. J Am Coll Radiol. 2021 May;18(5):741-751 [PMID: 33482120]
  16. Am J Respir Crit Care Med. 2020 Jul 15;202(2):165-167 [PMID: 32383972]
  17. Sci Rep. 2023 Apr 15;13(1):6157 [PMID: 37061539]
  18. AJR Am J Roentgenol. 2002 May;178(5):1053-7 [PMID: 11959700]
  19. Radiology. 2017 Apr;283(1):264-272 [PMID: 27740906]
  20. J Thorac Dis. 2020 Jun;12(6):3242-3244 [PMID: 32642246]
  21. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  22. Ann Am Thorac Soc. 2018 Oct;15(10):1117-1126 [PMID: 30272500]
  23. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  24. Arch Intern Med. 1997 Apr 28;157(8):849-55 [PMID: 9129544]
  25. Ann Intern Med. 2011 Oct 18;155(8):529-36 [PMID: 22007046]
  26. Chest. 2023 Oct;164(4):1028-1041 [PMID: 37244587]
  27. Radiol Artif Intell. 2021 Oct 27;3(6):e210027 [PMID: 34870218]
  28. Clin Kidney J. 2020 Nov 24;14(1):49-58 [PMID: 33564405]
  29. J Clin Oncol. 2022 Jul 1;40(19):2094-2105 [PMID: 35258994]
  30. Radiology. 2022 Sep;304(3):683-691 [PMID: 35608444]
  31. Thorax. 2020 Apr;75(4):306-312 [PMID: 32139611]
  32. J Am Coll Radiol. 2023 Feb;20(2):232-242 [PMID: 36064040]
  33. Cancer Treat Res. 2016;170:47-75 [PMID: 27535389]
  34. JAMA. 2000 Apr 19;283(15):2008-12 [PMID: 10789670]
  35. Br J Radiol. 2021 Jul 01;94(1123):20210222 [PMID: 34111976]
  36. Comput Biol Med. 2022 Nov;150:106113 [PMID: 36198225]
  37. EBioMedicine. 2022 Dec;86:104344 [PMID: 36370635]
  38. Comput Math Methods Med. 2022 Mar 22;2022:2864170 [PMID: 35360550]
  39. JAMA Netw Open. 2023 Mar 1;6(3):e233273 [PMID: 36929398]
  40. BJR Open. 2020 Mar 10;2(1):20190018 [PMID: 33178958]
  41. Radiology. 2023 Jun;307(5):e239013 [PMID: 37367452]
  42. Radiol Artif Intell. 2021 Oct 13;3(6):e210032 [PMID: 34870220]
  43. Chest. 2005 Oct;128(4):2490-6 [PMID: 16236914]
  44. Eur J Radiol. 2021 Apr;137:109553 [PMID: 33581913]
  45. Cancers (Basel). 2022 Aug 09;14(16): [PMID: 36010850]
  46. Thorac Cancer. 2022 Mar;13(5):664-677 [PMID: 35137543]
  47. IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3484-3495 [PMID: 30794190]
  48. Am J Respir Crit Care Med. 2020 Jul 15;202(2):241-249 [PMID: 32326730]
  49. Clin Cancer Res. 2021 Apr 15;27(8):2255-2265 [PMID: 33627492]
  50. Radiology. 2021 Aug;300(2):438-447 [PMID: 34003056]

MeSH Term

Humans
Deep Learning
Lung Neoplasms
Tomography, X-Ray Computed
Multiple Pulmonary Nodules
Risk Assessment
Solitary Pulmonary Nodule
Diagnosis, Computer-Assisted
Predictive Value of Tests

Word Cloud

Created with Highcharts 10.0.0modelsriskclinicalaloneDL-baseddiagnosticphysician95%CI1CADxperformancenodulesusedjudgementpooled0helpexternallyvalidatedmalignancyCT10practiceincludedstudiesPulmonaryBACKGROUND:growinginterestusingartificialintelligence/deeplearningDLdiagnoseprevalentdiseasesearlierstudysoughtsurveylandscapecomputer-aidedassesspredictingcomputedtomography-detectedpulmonaryMETHODS:electronicsearchperformedfourdatabasesinceptionAugust2023Studieseligiblepeer-reviewedexperimentalobservationalarticlescomparingwidelypredictbivariaterandom-effectapproachmeta-analysisRESULTS:Seventeencomprising8553participants9884Pooledanalysesshowed116%sensitive145%similarspecificity[07768-084v8171-088]74%specificsuperiorareasreceiveroperatingcurveAUCrelativeAUCs0300-10707-113versusrespectivelyCONCLUSION:alreadycertainsettingsnodulemanagementresultsshowpotentiallyjustifieswiderroutinedeploymentalongsideexperiencedreadersinformmultidisciplinaryteamdecision-makingDeepLearningModelsPredictingMalignancyRiskCT-DetectedNodules:SystematicReviewMeta-analysisChestDiagnosisLungcancerScreening

Similar Articles

Cited By