Unpredictable soil conditions can affect the prevalence of a microbial symbiosis.

Trey J Scott, Calum J Stephenson, Sandeep Rao, David C Queller, Joan E Strassmann
Author Information
  1. Trey J Scott: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States.
  2. Calum J Stephenson: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States.
  3. Sandeep Rao: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States.
  4. David C Queller: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States. ORCID
  5. Joan E Strassmann: Department of Biology, Washington University in St. Louis, St. Louis, MO, United States. ORCID

Abstract

The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using social amoebae and their bacterial endosymbionts. commonly hosts endosymbiotic bacteria from three taxa: and Chlamydiae. Three species of facultative endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of , suggesting a link between unpredictable conditions and symbiosis.

Keywords

References

Front Cell Infect Microbiol. 2018 Nov 23;8:411 [PMID: 30533398]
Sci Adv. 2021 Sep 24;7(39):eabe8980 [PMID: 34550732]
mSystems. 2022 Oct 26;7(5):e0056222 [PMID: 36098425]
R Soc Open Sci. 2023 Aug 16;10(8):230727 [PMID: 37593719]
Ecol Evol. 2020 Oct 20;10(23):13182-13189 [PMID: 33304528]
PLoS Biol. 2017 Jun 21;15(6):e2000483 [PMID: 28636615]
Environ Microbiol Rep. 2021 Oct;13(5):708-719 [PMID: 34159734]
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2093-8 [PMID: 20133855]
Ecology. 2013 Oct;94(10):2334-45 [PMID: 24358718]
Nature. 2018 Aug;560(7717):233-237 [PMID: 30069051]
PeerJ. 2020 May 22;8:e9151 [PMID: 32509456]
Appl Environ Microbiol. 2022 Sep 27;88(18):e0128522 [PMID: 36043858]
ISME J. 2019 Aug;13(8):2068-2081 [PMID: 31019270]
Curr Biol. 2011 Jan 11;21(1):72-8 [PMID: 21185192]
Mol Ecol. 2019 Feb;28(4):847-862 [PMID: 30575161]
ISME J. 2023 Dec;17(12):2352-2361 [PMID: 37884792]
mBio. 2019 May 14;10(3): [PMID: 31088922]
Sci Data. 2020 Apr 3;7(1):109 [PMID: 32246091]
PeerJ. 2024 May 20;12:e17445 [PMID: 38784393]
Environ Microbiol. 2021 Jan;23(1):126-142 [PMID: 33063404]
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5029-37 [PMID: 26305954]
Evol Lett. 2022 May 02;6(3):245-254 [PMID: 35784451]
Nat Ecol Evol. 2017 Feb 17;1(3):57 [PMID: 28812731]
Proc Biol Sci. 2024 Aug;291(2027):20241111 [PMID: 39016123]
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2205856119 [PMID: 36037367]
Nature. 2011 Jan 20;469(7330):393-6 [PMID: 21248849]
Ecol Lett. 2015 Oct;18(10):1057-67 [PMID: 26248800]
New Phytol. 2022 Mar;233(5):1984-1987 [PMID: 34761405]
Evol Lett. 2024 Jan 27;8(3):437-447 [PMID: 38818420]
Curr Biol. 2020 Feb 24;30(4):691-697.e3 [PMID: 32008900]
Glob Chang Biol. 2022 May;28(9):3110-3144 [PMID: 34967074]

MeSH Term

Symbiosis
Soil Microbiology
Dictyostelium
Burkholderiaceae
Soil
United States
Chlamydia

Chemicals

Soil

Word Cloud

Similar Articles

Cited By