Synthesis of the Antimicrobial Peptide Murepavadin Using Novel Coupling Agents.

Júlia García-Gros, Yolanda Cajal, Ana Maria Marqués, Francesc Rabanal
Author Information
  1. Júlia García-Gros: Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain.
  2. Yolanda Cajal: Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain. ORCID
  3. Ana Maria Marqués: Laboratory of Microbiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08007 Barcelona, Spain. ORCID
  4. Francesc Rabanal: Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain. ORCID

Abstract

The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, murepavadin is a cyclic antibacterial peptide in development. The synthesis of murepavadin was undertaken in order to optimize the preparative protocol and scale-up, in particular, the use of new activation reagents. In our hands, classical approaches using carbodiimide/hydroxybenzotriazole rendered low yields. The use of novel carbodiimide and reagents based on OxymaPure and Oxy-B is discussed together with the proper use of chromatographic conditions for the adequate characterization of peptide crudes. Higher yields and purities were obtained. Finally, the antimicrobial activity of different synthetic batches was tested in three strains, including highly resistant ones. All murepavadin batches yielded the same highly active MIC values and proved that the chiral integrity of the molecule was preserved throughout the whole synthetic procedure.

Keywords

References

  1. Science. 2010 Feb 19;327(5968):1010-3 [PMID: 20167788]
  2. Bioorg Med Chem. 2005 Mar 15;13(6):2055-64 [PMID: 15727859]
  3. Chem Rev. 2011 Nov 9;111(11):6557-602 [PMID: 21866984]
  4. Sci Rep. 2015 May 29;5:10558 [PMID: 26024044]
  5. Biochim Biophys Acta. 2016 Feb;1858(2):333-43 [PMID: 26607008]
  6. Med Drug Discov. 2021 Mar;9:100078 [PMID: 33398258]
  7. Acc Chem Res. 2017 Jun 20;50(6):1323-1331 [PMID: 28570824]
  8. ACS Chem Biol. 2018 Mar 16;13(3):666-675 [PMID: 29359918]
  9. J Hazard Mater. 2005 Nov 11;126(1-3):1-7 [PMID: 16084016]
  10. J Phys Chem B. 2006 Mar 9;110(9):4465-71 [PMID: 16509750]
  11. J Pept Sci. 2010 Jan;16(1):6-9 [PMID: 19950108]
  12. Bioorg Med Chem. 2013 Sep 15;21(18):5806-10 [PMID: 23932450]
  13. Nat Prod Rep. 2017 Jul 6;34(7):886-908 [PMID: 28628170]
  14. Bioorg Med Chem. 2018 Jun 1;26(10):2700-2707 [PMID: 28720325]
  15. Signal Transduct Target Ther. 2022 Feb 14;7(1):48 [PMID: 35165272]
  16. Org Biomol Chem. 2014 Nov 14;12(42):8379-85 [PMID: 25233797]
  17. Expert Rev Anti Infect Ther. 2018 Apr;16(4):259-268 [PMID: 29451043]
  18. J Org Chem. 2021 Nov 5;86(21):15242-15246 [PMID: 34641669]
  19. Luminescence. 2005 May-Jun;20(3):117-23 [PMID: 15924313]
  20. Antimicrob Agents Chemother. 2018 Jun 26;62(7): [PMID: 29686157]
  21. Pharmaceutics. 2023 Apr 21;15(4): [PMID: 37111798]
  22. J Antimicrob Chemother. 2021 Mar 12;76(4):984-992 [PMID: 33367642]
  23. Chemistry. 2009 Sep 21;15(37):9394-403 [PMID: 19575348]
  24. Biochem J. 1996 May 1;315 ( Pt 3):833-44 [PMID: 8645165]
  25. Front Bioeng Biotechnol. 2020 Mar 04;8:162 [PMID: 32195241]
  26. ACS Omega. 2022 Feb 09;7(7):6007-6023 [PMID: 35224362]
  27. Org Lett. 2021 Sep 3;23(17):6900-6904 [PMID: 34424718]
  28. J Org Chem. 2019 Apr 19;84(8):4615-4628 [PMID: 30900880]
  29. Pharmaceuticals (Basel). 2021 Feb 11;14(2): [PMID: 33670364]
  30. J Antimicrob Chemother. 2018 Dec 1;73(12):3385-3390 [PMID: 30215733]
  31. ACS Comb Sci. 2013 May 13;15(5):229-34 [PMID: 23521015]
  32. Angew Chem Int Ed Engl. 2002 Feb 1;41(3):441-5 [PMID: 12491372]
  33. Pharmaceutics. 2021 Dec 17;13(12): [PMID: 34959460]
  34. Chembiochem. 2012 Aug 13;13(12):1767-75 [PMID: 22807320]
  35. Chembiochem. 2002 Nov 4;3(11):1126-33 [PMID: 12404639]

Grants

  1. JPI-AMR-2022-066/JPI-AMR, DRUID call
  2. PCI2023-143362/AEI of the Ministry of Science, Innovation and Universities
  3. PID2021-124342OB-I00/AEI of the Ministry of Science, Innovation and Universities
  4. FISDU 00155/Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR, Generalitat de Catalunya)
  5. 2021 SGR 00288/AGAUR Grup de Recerca de la Generalitat de Catalunya

MeSH Term

Pseudomonas aeruginosa
Microbial Sensitivity Tests
Peptides, Cyclic
Anti-Bacterial Agents
Antimicrobial Peptides
Carbodiimides
Humans

Chemicals

Peptides, Cyclic
murepavadin
Anti-Bacterial Agents
Antimicrobial Peptides
Carbodiimides

Word Cloud

Created with Highcharts 10.0.0murepavadinpeptideantimicrobialusenewresistantcyclicantibacterialsynthesisreagentsyieldsactivitysyntheticbatcheshighlyproblemresistancebecomingdauntingchallengehumansocietyhealthcaresystemsaroundworldHenceconstantneeddevelopantibioticsfightbacteriaamongimportantsocialeconomicmeasuresregarddevelopmentundertakenorderoptimizepreparativeprotocolscale-upparticularactivationhandsclassicalapproachesusingcarbodiimide/hydroxybenzotriazolerenderedlownovelcarbodiimidebasedOxymaPureOxy-BdiscussedtogetherproperchromatographicconditionsadequatecharacterizationcrudesHigherpuritiesobtainedFinallydifferenttestedthreestrainsincludingonesyieldedactiveMICvaluesprovedchiralintegritymoleculepreservedthroughoutwholeprocedureSynthesisAntimicrobialPeptideMurepavadinUsingNovelCouplingAgentsacylationagentsantibioticsolidphase

Similar Articles

Cited By