Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects.

Wenyun Li, Gen Zou, Dapeng Bao, Yingying Wu
Author Information
  1. Wenyun Li: National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China. ORCID
  2. Gen Zou: National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China. ORCID
  3. Dapeng Bao: National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
  4. Yingying Wu: National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China. ORCID

Abstract

Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.

Keywords

References

  1. Curr Med Chem. 2010;17(22):2419-30 [PMID: 20491636]
  2. ISME J. 2023 Aug;17(8):1236-1246 [PMID: 37221394]
  3. Int Immunopharmacol. 2023 Mar;116:109759 [PMID: 36731150]
  4. Sheng Wu Gong Cheng Xue Bao. 2020 Jul 25;36(7):1293-1304 [PMID: 32748587]
  5. Appl Microbiol Biotechnol. 2018 Jul;102(13):5483-5494 [PMID: 29705959]
  6. Environ Microbiol. 2020 Jan;22(1):107-121 [PMID: 31608522]
  7. Front Microbiol. 2020 Apr 24;11:577 [PMID: 32390960]
  8. Int J Mol Sci. 2016 Nov 28;17(12): [PMID: 27916794]
  9. Cell Chem Biol. 2017 Dec 21;24(12):1479-1489.e4 [PMID: 29056419]
  10. Biotechnol Bioeng. 2018 Jul;115(7):1842-1854 [PMID: 29476632]
  11. J Fungi (Basel). 2023 Jun 19;9(6): [PMID: 37367624]
  12. Microbiol Mol Biol Rev. 1998 Mar;62(1):55-70 [PMID: 9529887]
  13. J Microbiol Methods. 2018 Sep;152:7-9 [PMID: 30017848]
  14. Sci Total Environ. 2023 Apr 15;869:161807 [PMID: 36707006]
  15. Int J Biol Macromol. 2023 Jun 30;241:124648 [PMID: 37119883]
  16. Methods Mol Biol. 2021;2234:87-98 [PMID: 33165782]
  17. Int J Biol Macromol. 2021 Sep 30;187:769-779 [PMID: 34197853]
  18. Phytochemistry. 2023 Sep;213:113791 [PMID: 37454886]
  19. Appl Environ Microbiol. 2016 Jun 30;82(14):4112-4125 [PMID: 27129961]
  20. Sci Rep. 2017 Apr 28;7(1):1260 [PMID: 28455526]
  21. Nutrients. 2022 May 28;14(11): [PMID: 35684068]
  22. Int J Med Mushrooms. 2013;15(3):223-32 [PMID: 23662611]
  23. Genes (Basel). 2022 Jun 17;13(6): [PMID: 35741841]
  24. Front Immunol. 2023 Jan 12;13:1034545 [PMID: 36713368]
  25. J Biotechnol. 2016 Jan 10;217:132-7 [PMID: 26603122]
  26. Mycoscience. 2021 Mar 20;62(2):106-114 [PMID: 37089250]
  27. Int J Mol Sci. 2019 Dec 04;20(24): [PMID: 31817230]
  28. Int J Biol Macromol. 2019 Aug 1;134:146-155 [PMID: 31077694]
  29. Front Microbiol. 2022 Nov 17;13:1009885 [PMID: 36478857]
  30. PLoS One. 2020 Mar 27;15(3):e0230680 [PMID: 32218597]
  31. FEMS Microbiol Lett. 2023 Jan 17;370: [PMID: 37081785]
  32. Front Microbiol. 2021 Jun 22;12:698436 [PMID: 34239513]
  33. Fungal Genet Biol. 2018 Sep;118:37-44 [PMID: 30003956]
  34. Front Immunol. 2020 Oct 26;11:559770 [PMID: 33193329]
  35. Drug Discov Today. 2019 Jan;24(1):307-314 [PMID: 30266655]
  36. Microb Biotechnol. 2021 Nov;14(6):2343-2355 [PMID: 32841542]
  37. J Biosci Bioeng. 2013 Apr;115(4):360-5 [PMID: 23177216]
  38. Trends Biotechnol. 2023 Apr;41(4):480-483 [PMID: 36307231]
  39. Life (Basel). 2023 Mar 12;13(3): [PMID: 36983919]
  40. Sheng Wu Gong Cheng Xue Bao. 2021 May 25;37(5):1637-1658 [PMID: 34085447]
  41. PLoS One. 2022 Mar 16;17(3):e0255765 [PMID: 35294444]
  42. Fungal Biol. 2019 Feb;123(2):95-102 [PMID: 30709523]
  43. Int J Biol Macromol. 2022 Feb 28;199:341-347 [PMID: 35026222]
  44. Microb Biotechnol. 2020 Mar;13(2):386-396 [PMID: 31958883]
  45. Appl Microbiol Biotechnol. 2020 Dec;104(24):10737-10753 [PMID: 33064185]
  46. J Agric Food Chem. 2018 May 9;66(18):4702-4709 [PMID: 29693394]
  47. Genes (Basel). 2019 Jun 19;10(6): [PMID: 31248134]
  48. Front Microbiol. 2018 Jun 12;9:1157 [PMID: 29946301]
  49. Synth Syst Biotechnol. 2022 Feb 16;7(2):664-670 [PMID: 35224234]
  50. Microbiology (Reading). 2017 Oct;163(10):1466-1476 [PMID: 28901910]
  51. J Biotechnol. 2013 Dec;168(4):527-33 [PMID: 24070903]
  52. Mol Biol Rep. 2012 May;39(5):6149-59 [PMID: 22203490]
  53. Int J Mol Sci. 2023 Feb 27;24(5): [PMID: 36902017]
  54. Mycobiology. 2010 Dec;38(4):331-5 [PMID: 23956676]
  55. Int J Biol Macromol. 2020 Oct 15;161:1161-1170 [PMID: 32561281]
  56. Appl Microbiol Biotechnol. 2018 Sep;102(18):7795-7803 [PMID: 30027491]
  57. J Agric Food Chem. 2019 Aug 14;67(32):8875-8883 [PMID: 31347830]
  58. Front Microbiol. 2020 Mar 26;11:498 [PMID: 32273873]
  59. Int J Biol Macromol. 2020 May 1;150:536-545 [PMID: 32057882]
  60. Molecules. 2023 Jun 15;28(12): [PMID: 37375351]
  61. Int J Biol Macromol. 2020 Dec 15;165(Pt A):1593-1603 [PMID: 33031851]
  62. Carbohydr Polym. 2018 Nov 15;200:487-497 [PMID: 30177190]
  63. mBio. 2022 Jun 28;13(3):e0062822 [PMID: 35604096]
  64. Appl Microbiol Biotechnol. 2021 Oct;105(19):7353-7365 [PMID: 34515845]
  65. Microb Cell Fact. 2023 Oct 10;22(1):205 [PMID: 37817159]
  66. Appl Environ Microbiol. 2021 Jun 25;87(14):e0015621 [PMID: 33962980]
  67. Synth Syst Biotechnol. 2023 Mar 16;8(2):242-252 [PMID: 37007278]
  68. Metab Eng. 2019 Dec;56:111-119 [PMID: 31550507]
  69. Microb Cell Fact. 2022 Aug 8;21(1):155 [PMID: 35934720]
  70. Int J Med Mushrooms. 2022;24(8):1-20 [PMID: 35997091]
  71. World J Microbiol Biotechnol. 2017 Nov 21;33(12):214 [PMID: 29164387]
  72. Front Bioeng Biotechnol. 2021 Nov 25;9:796278 [PMID: 34900974]
  73. Front Microbiol. 2018 Nov 30;9:2944 [PMID: 30555451]
  74. Enzyme Microb Technol. 2023 Aug;168:110254 [PMID: 37201411]
  75. Food Res Int. 2022 Dec;162(Pt B):112090 [PMID: 36461398]
  76. Int J Mol Sci. 2023 May 02;24(9): [PMID: 37175859]
  77. Int J Mol Sci. 2023 Mar 02;24(5): [PMID: 36902290]
  78. J Fungi (Basel). 2022 May 29;8(6): [PMID: 35736064]
  79. Appl Microbiol Biotechnol. 2020 Jul;104(13):5827-5844 [PMID: 32356196]
  80. Fungal Genet Biol. 2020 Sep;142:103415 [PMID: 32497577]
  81. Microb Cell Fact. 2023 Mar 30;22(1):60 [PMID: 36998045]
  82. Fungal Genet Biol. 2017 Jul;104:6-15 [PMID: 28435030]
  83. Environ Microbiol. 2017 Apr;19(4):1653-1668 [PMID: 28198137]
  84. Appl Microbiol Biotechnol. 2022 Jan;106(2):563-578 [PMID: 34939133]
  85. Appl Microbiol Biotechnol. 2019 Oct;103(19):7843-7867 [PMID: 31407039]
  86. Environ Microbiol. 2021 Feb;23(2):1286-1297 [PMID: 33438292]
  87. Front Microbiol. 2023 Jan 10;13:1038034 [PMID: 36704565]
  88. Appl Microbiol Biotechnol. 2016 Aug;100(16):7151-9 [PMID: 27207144]
  89. World J Microbiol Biotechnol. 2018 Sep 14;34(10):148 [PMID: 30218324]
  90. Front Microbiol. 2022 Feb 17;12:815954 [PMID: 35250915]
  91. Molecules. 2021 Nov 05;26(21): [PMID: 34771120]
  92. Appl Microbiol Biotechnol. 2010 Jul;87(4):1221-35 [PMID: 20532758]
  93. Chembiochem. 2023 Jun 1;24(11):e202300008 [PMID: 36862368]
  94. Fungal Genet Biol. 2013 Sep-Oct;58-59:80-90 [PMID: 23973959]
  95. Biotechnol Lett. 2016 Jun;38(6):919-29 [PMID: 26892225]
  96. Bioprocess Biosyst Eng. 2015 Feb;38(2):399-405 [PMID: 25218329]
  97. Bioessays. 2008 Aug;30(8):711-4 [PMID: 18623067]
  98. Mycologia. 2016 Nov/Dec;108(6):1104-1113 [PMID: 27760853]
  99. Bioresour Technol. 2023 May;376:128888 [PMID: 36925076]
  100. J Chem Inf Model. 2016 Oct 24;56(10):2103-2114 [PMID: 27649295]
  101. Chin Herb Med. 2023 Jun 10;15(3):376-382 [PMID: 37538858]
  102. Food Res Int. 2021 Sep;147:110452 [PMID: 34399454]
  103. Appl Microbiol Biotechnol. 2022 Jan;106(2):523-534 [PMID: 34921329]
  104. J Nat Prod. 2015 Jul 24;78(7):1556-62 [PMID: 26125648]
  105. J Fungi (Basel). 2022 Apr 14;8(4): [PMID: 35448632]
  106. Phytomedicine. 2021 Jan;80:153384 [PMID: 33113507]
  107. Curr Res Food Sci. 2022 Dec 27;6:100430 [PMID: 36605463]
  108. Oxid Med Cell Longev. 2019 May 6;2019:3139689 [PMID: 31198490]
  109. Sci Rep. 2019 May 21;9(1):7632 [PMID: 31113995]
  110. World J Microbiol Biotechnol. 2019 Oct 21;35(11):163 [PMID: 31637600]
  111. Arch Microbiol. 2021 Nov;203(9):5373-5380 [PMID: 34387705]
  112. Appl Microbiol Biotechnol. 2020 Aug;104(16):6855-6871 [PMID: 32556413]
  113. Int J Biol Macromol. 2022 Dec 31;223(Pt A):1320-1334 [PMID: 36395936]
  114. Microb Cell Fact. 2019 Jun 28;18(1):115 [PMID: 31253150]
  115. Phytochemistry. 2022 Jun;198:113131 [PMID: 35248578]
  116. Mediators Inflamm. 2014;2014:805841 [PMID: 25505823]
  117. Bioresour Technol. 2021 Jan;319:124119 [PMID: 32957048]
  118. Int J Biol Macromol. 2023 Jun 1;239:124291 [PMID: 37028620]
  119. Compr Rev Food Sci Food Saf. 2021 Mar;20(2):1982-2014 [PMID: 33599116]
  120. World J Microbiol Biotechnol. 2013 Mar;29(3):523-31 [PMID: 23138457]
  121. Heliyon. 2023 Jun 07;9(6):e16682 [PMID: 37484292]
  122. J Microbiol Methods. 2020 Apr;171:105878 [PMID: 32092329]
  123. Appl Microbiol Biotechnol. 2022 Aug;106(13-16):4907-4920 [PMID: 35829788]
  124. mBio. 2022 Feb 1;13(1):e0362621 [PMID: 35100879]
  125. Int J Biol Macromol. 2023 Dec 31;253(Pt 2):126778 [PMID: 37683745]
  126. Molecules. 2022 Jun 25;27(13): [PMID: 35807336]
  127. Mol Genet Genomics. 2019 Jun;294(3):663-677 [PMID: 30778675]
  128. Mycobiology. 2015 Sep;43(3):327-32 [PMID: 26539050]
  129. J Fungi (Basel). 2023 Mar 27;9(4): [PMID: 37108867]
  130. Bioresour Technol. 2022 Mar;348:126792 [PMID: 35121098]
  131. J Basic Microbiol. 2016 Sep;56(9):1036-45 [PMID: 27106661]
  132. Eukaryot Cell. 2010 Jun;9(6):847-59 [PMID: 20190072]
  133. J Fungi (Basel). 2022 Sep 23;8(10): [PMID: 36294565]
  134. Appl Microbiol Biotechnol. 2021 Apr;105(7):2815-2829 [PMID: 33675375]
  135. Gene. 2021 Jun 15;785:145618 [PMID: 33775849]
  136. Microbiol Res. 2015 Oct;179:54-63 [PMID: 26411895]
  137. Environ Microbiol. 2016 Dec;18(12):4687-4696 [PMID: 27113919]
  138. FEMS Microbiol Lett. 2023 Jan 17;370: [PMID: 36812945]
  139. Wei Sheng Wu Xue Bao. 2012 Jul 4;52(7):850-6 [PMID: 23115969]
  140. Microb Cell Fact. 2023 Jan 30;22(1):20 [PMID: 36717860]
  141. Front Microbiol. 2022 May 09;13:878110 [PMID: 35615508]
  142. Microb Biotechnol. 2022 Oct;15(10):2594-2606 [PMID: 35829671]
  143. J Microbiol Methods. 2018 Sep;152:148-153 [PMID: 30071256]
  144. Sci Rep. 2017 Mar 22;7(1):310 [PMID: 28331193]
  145. Appl Environ Microbiol. 2019 Nov 27;85(24): [PMID: 31604770]
  146. Int J Med Mushrooms. 2018;20(6):537-548 [PMID: 29953350]
  147. J Fungi (Basel). 2022 Feb 14;8(2): [PMID: 35205941]
  148. Microbiol Spectr. 2023 Mar 14;:e0527222 [PMID: 36916925]
  149. J Fungi (Basel). 2023 Sep 23;9(10): [PMID: 37888215]
  150. mSphere. 2017 Nov 22;2(6): [PMID: 29202040]
  151. Appl Microbiol Biotechnol. 2019 Oct;103(19):7835-7841 [PMID: 31410524]
  152. Biotechnol Bioeng. 2019 Dec;116(12):3301-3311 [PMID: 31449331]
  153. Appl Environ Microbiol. 2022 Dec 13;88(23):e0094022 [PMID: 36374019]
  154. Microb Biotechnol. 2022 Dec;15(12):2982-2991 [PMID: 36134724]
  155. Fungal Biol. 2019 Mar;123(3):200-208 [PMID: 30798875]
  156. Gene. 2019 Jul 20;706:84-90 [PMID: 31028867]
  157. Front Microbiol. 2023 May 25;14:1169884 [PMID: 37303782]
  158. Appl Microbiol Biotechnol. 2011 Mar;89(5):1323-32 [PMID: 21190105]
  159. Appl Microbiol Biotechnol. 2020 Feb;104(4):1661-1671 [PMID: 31865439]
  160. Front Microbiol. 2021 Sep 16;12:724451 [PMID: 34603250]
  161. Foods. 2021 Jan 05;10(1): [PMID: 33466429]
  162. Appl Microbiol Biotechnol. 2023 Oct;107(20):6179-6191 [PMID: 37624406]
  163. Front Microbiol. 2020 Jun 10;11:1038 [PMID: 32587577]
  164. J Fungi (Basel). 2020 Nov 09;6(4): [PMID: 33182449]
  165. Microbiol Res. 2018 Mar;207:280-288 [PMID: 29458864]
  166. Nat Commun. 2022 Dec 14;13(1):7740 [PMID: 36517496]
  167. Food Chem Toxicol. 2019 Mar;125:38-45 [PMID: 30590138]
  168. Int Immunopharmacol. 2022 Jun;107:108695 [PMID: 35305385]
  169. Sheng Wu Gong Cheng Xue Bao. 2021 Mar 25;37(3):874-910 [PMID: 33783156]
  170. Nature. 2016 Apr 21;532(7599):293 [PMID: 27111611]
  171. Nature. 1950 Dec 2;166(4231):949 [PMID: 14796634]
  172. FEMS Microbiol Lett. 2014 Mar;352(2):190-7 [PMID: 24484244]
  173. Appl Environ Microbiol. 2012 Nov;78(22):7968-76 [PMID: 22941092]
  174. J Neuroinflammation. 2021 Jun 15;18(1):137 [PMID: 34130727]
  175. Front Microbiol. 2023 May 04;14:1139679 [PMID: 37213522]
  176. Phytochemistry. 2021 Apr;184:112677 [PMID: 33556840]
  177. Fungal Biol. 2019 Mar;123(3):209-217 [PMID: 30798876]
  178. Mater Today Bio. 2023 Jan 21;19:100560 [PMID: 36756210]

Grants

  1. (Grant No. X2022-02-08-00-12-F01137)/Shanghai Agriculture Applied Technology Development Program, China
  2. (2022)014/Excellent Team Plan of Shanghai Academy of Agricultural Sciences

Word Cloud

Created with Highcharts 10.0.0ediblemedicinalfungigenesfunctionalresearchgeneFunctionalbiologicaldevelopmenttraitsgrowthyieldqualitypromotingimportantapplicationactivesubstancesencodevariousfunctionsrequiredlifeactivitiesorganismsanalyzingvarietiescanimprovedenhanceagronomicratesabilitywithstandadversitytherebyincreasingindustrialrapidtechnologypublicationmanywhole-genomesequencesrelatedminedlocatedfunctionallyanalyzedpapersummarizesadvantagesdisadvantagesdifferenttechniquesexamplessystematicallyreviewsprogressprocessesmatingtypemyceliumfruitsubstrateutilizationnutrienttransportenvironmentalresponsesynthesisregulationproposesfuturedirectionsoverallaimstudyprovidevaluablereferencemolecularbreedinghighpromotewideproductsfoodmedicineindustryCurrentAdvancesGenesEdibleMedicinalFungi:ResearchTechniquesAnalysisProspectseditinggenetictransformationmacrofungimating-type

Similar Articles

Cited By