This study evaluates the efficacy of the salts sodium metabisulfite (SMB), ammonium bicarbonate, sodium bicarbonate, and potassium dihydrogen orthophosphate first in vitro against the main postharvest fruit rot fungi, , , , and . Results showed that 0.2% SMB completely inhibited the mycelium growth of the fungal species. Ammonium bicarbonate and sodium bicarbonate were less effective at 0.2% in inhibiting mycelial growth, ranging from 57.6% to 77.6%. The least effective was potassium dihydrogen orthophosphate. Experiments were also performed in vivo on wounded apples inoculated with the most pathogenic fungus, , and treated with SMB at concentrations of 0.2, 0.5, 1, 2, and 3%, both preventively and curatively. Results based on the decay size showed that SMB, when used as a preventive treatment, had a reduced efficacy, even with the highest concentration. However, this salt proved to be very effective at 0.5% in curative treatment since the decay was completely blocked. Our results suggest that the appropriate concentration of SMB for post-harvest treatment is 0.5% as a curative treatment. On the other hand, the 1% dose induced the onset of phytotoxicity around the wound. To assess the extent of the phytotoxicity reaction, higher concentrations of 1-4% SMB were applied to wounded fruit. Apples and oranges were inoculated or not with and , respectively. Doses of 1-4% induced phytotoxicity in the form of a discolored ring surrounding the wound on the epidermis of the fruit; this phytotoxicity enlarged as the concentration of SMB increased. The phytotoxic features were similar on apples and oranges. The methodological procedure made it possible to carry out a quantitative assessment of SMB phytotoxicity. This method is proposed as an easy-to-use technique for quantitatively estimating the phytotoxicity of antifungal compounds on post-harvest fruit.