Pollution Characteristics and Risk Assessment of Heavy Metals in the Sediments of the Inflow Rivers of Dianchi Lake, China.

Liwei He, Guangye Chen, Xinze Wang, Jian Shen, Hongjiao Zhang, Yuanyuan Lin, Yang Shen, Feiyan Lang, Chenglei Gong
Author Information
  1. Liwei He: Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China. ORCID
  2. Guangye Chen: School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
  3. Xinze Wang: Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China.
  4. Jian Shen: Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China. ORCID
  5. Hongjiao Zhang: School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
  6. Yuanyuan Lin: School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
  7. Yang Shen: School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
  8. Feiyan Lang: School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
  9. Chenglei Gong: School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.

Abstract

To explore the contamination status and identify the source of the heavy metals in the sediments in the major inflow rivers of Dianchi Lake in China, sediment samples were collected and analyzed. Specifically, the distribution, source, water quality, and health risk assessment of the heavy metals were analyzed using correlation analysis (CA), principal component analysis (PCA), the heavy metal contamination factor (), the pollution load index (), and the potential ecological risk index (). Additionally, the chemical fractions were analyzed for mobility characteristics. The results indicate that the average concentration of the heavy metals in the sediment ranked in the descending order of Zn > Cr > Cu > Pb > As > Ni > Cd > Hg, and most of the elements existed in less-mobile forms. The was in the order of Hg > Zn > Cd > As > Pb > Cr > Ni; the accumulation of Hg, Zn, Cd, and As was obvious. Although the spatial variability of the heavy metal contents was pronounced, the synthetical evaluation index of the and both reached a high pollution level. The PCA and CA results indicate that industrial, transportation, and agricultural emissions were the dominant factors causing heavy metal pollution. These results provide important data for improving water resource management efficiency and heavy metal pollution prevention in Dianchi Lake.

Keywords

References

  1. Sci Total Environ. 2018 Nov 1;640-641:746-756 [PMID: 29879663]
  2. Ecotoxicology. 2015 Aug;24(6):1279-93 [PMID: 26059468]
  3. Mar Pollut Bull. 2024 Jan;198:115910 [PMID: 38101065]
  4. Environ Res. 2024 Mar 15;245:117975 [PMID: 38145736]
  5. Environ Toxicol Pharmacol. 2023 Nov;104:104307 [PMID: 37914033]
  6. J Hazard Mater. 2020 Jul 5;393:122424 [PMID: 32143165]
  7. Environ Int. 2007 Jan;33(1):108-21 [PMID: 16914205]
  8. Sci Total Environ. 2016 Feb 1;543(Pt A):105-115 [PMID: 26580732]
  9. Sci Total Environ. 2020 Apr 1;711:134543 [PMID: 31812425]
  10. J Environ Manage. 2022 Feb 15;304:114229 [PMID: 34922188]
  11. Ecotoxicol Environ Saf. 2017 Jul;141:75-84 [PMID: 28319862]
  12. Mar Pollut Bull. 2012 Feb;64(2):405-9 [PMID: 22196693]
  13. Environ Sci Pollut Res Int. 2017 Aug;24(23):19076-19085 [PMID: 28660509]
  14. Mar Pollut Bull. 2013 Sep 15;74(1):403-12 [PMID: 23820195]
  15. J Hazard Mater. 2013 Oct 15;261:387-97 [PMID: 23973471]
  16. J Hazard Mater. 2021 Aug 15;416:125818 [PMID: 34492783]
  17. Ecotoxicol Environ Saf. 2018 Nov 15;163:444-455 [PMID: 30075447]
  18. Chemosphere. 2017 May;175:473-481 [PMID: 28242463]
  19. Chemosphere. 2021 Nov;282:131041 [PMID: 34090003]
  20. Res Social Adm Pharm. 2021 May;17(5):1004-1011 [PMID: 33162380]
  21. Chemosphere. 2018 Mar;195:291-300 [PMID: 29272798]
  22. Chemosphere. 2011 Oct;85(3):361-7 [PMID: 21794891]
  23. Chemosphere. 2019 May;223:211-222 [PMID: 30784728]
  24. Environ Pollut. 2024 Feb 15;343:123216 [PMID: 38145637]
  25. Ecotoxicol Environ Saf. 2020 Jul 15;198:110666 [PMID: 32361493]
  26. Chemosphere. 2006 Jun;63(9):1451-8 [PMID: 16325225]
  27. Chemosphere. 2013 Nov;93(9):1957-64 [PMID: 23880240]
  28. Mar Pollut Bull. 2023 Nov;196:115571 [PMID: 37783163]
  29. Environ Sci Pollut Res Int. 2020 Dec;27(35):43526-43541 [PMID: 32909134]
  30. Environ Monit Assess. 2014 Feb;186(2):1219-34 [PMID: 24078143]
  31. Huan Jing Ke Xue. 2015 Feb;36(2):471-80 [PMID: 26031072]
  32. Naturwissenschaften. 1976 Oct;63(10):465-70 [PMID: 790198]
  33. Environ Pollut. 2018 Nov;242(Pt A):426-432 [PMID: 30005255]
  34. J Hazard Mater. 2009 Jul 30;166(2-3):1186-94 [PMID: 19179000]

Grants

  1. 202101AU070058/Basic Research Program-Youth Program of Science and Technology Department in Yunnan province
  2. YJL2215/University-level talent introduction project of Kunming university

Word Cloud

Created with Highcharts 10.0.0>heavymetalpollutionsourcemetalsDianchiLakeanalyzedriskindexresultsZnCdHgcontaminationChinasedimentwaterassessmentanalysisCAPCAchemicalindicateorderCrPbNiexplorestatusidentifysedimentsmajorinflowriverssamplescollectedSpecificallydistributionqualityhealthusingcorrelationprincipalcomponentfactorloadpotentialecologicalAdditionallyfractionsmobilitycharacteristicsaverageconcentrationrankeddescendingCuelementsexistedless-mobileformsaccumulationobviousAlthoughspatialvariabilitycontentspronouncedsyntheticalevaluationreachedhighlevelindustrialtransportationagriculturalemissionsdominantfactorscausingprovideimportantdataimprovingresourcemanagementefficiencypreventionPollutionCharacteristicsRiskAssessmentHeavyMetalsSedimentsInflowRiversspeciationidentification

Similar Articles

Cited By