In Vitro Antioxidant and In Silico Evaluation of the Anti-��-Lactamase Potential of the Extracts of NR125682 and NR117881.

Albert O Ikhane, Siphesihle Z Sithole, Nkosinathi D Cele, Foluso O Osunsanmi, Rebamang A Mosa, Andrew R Opoku
Author Information
  1. Albert O Ikhane: Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa. ORCID
  2. Siphesihle Z Sithole: Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa. ORCID
  3. Nkosinathi D Cele: Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
  4. Foluso O Osunsanmi: Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
  5. Rebamang A Mosa: Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0028, South Africa. ORCID
  6. Andrew R Opoku: Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.

Abstract

Cyanobacteria in recent times have been touted to be a suitable source for the discovery of novel compounds, including antioxidants and antibiotics, due to their large arsenal of metabolites. This study presents the in vitro antioxidant and in silico evaluation of NR125682 and NR117881, isolated from freshwater ponds around the campus of the University of Zululand, South Africa. The isolates were confirmed using 16S rRNA. Various crude extracts of the isolated microbes were prepared through sequential extraction using hexane, dichloromethane, and 70% ethanol. The chemical constituents of the crude extracts were elucidated by FTIR and GC-MS spectroscopy. The antioxidant potential of the extracts was determined by the free radical (DPPH, ABTS, OH, and Fe) systems. Molecular docking of the major constituents of the extracts against ��-lactamase was also evaluated. GC-MS analysis indicated the dominating presence of n-alkanes. The extracts exhibited varying degrees of antioxidant activity (scavenging of free radicals; an IC range of 8-10 ��g/mL was obtained for ABTS). A good binding affinity (-6.6, -6.3 Kcal/mol) of some the organic chemicals (diglycerol tetranitrate, and 2,2-dimethyl-5-(3-methyl-2-oxiranyl)cyclohexanone) was obtained following molecular docking. The evaluated antioxidant activities, coupled with the obtained docking score, potentiates the antimicrobial activity of the extracts.

Keywords

References

  1. Mol Divers. 2021 May;25(2):763-776 [PMID: 32100245]
  2. Food Chem. 2019 Mar 1;275:41-49 [PMID: 30724215]
  3. J Agric Food Chem. 2003 Jan 29;51(3):609-14 [PMID: 12537430]
  4. Plants (Basel). 2019 Apr 11;8(4): [PMID: 30978964]
  5. J Microbiol. 2019 Mar;57(3):203-212 [PMID: 30806977]
  6. Food Chem. 2023 Feb 15;402:134231 [PMID: 36162170]
  7. Sci Transl Med. 2022 Aug 10;14(657):eabo7793 [PMID: 35947678]
  8. ACS Nano. 2021 May 25;15(5):9027-9038 [PMID: 33881831]
  9. J Ayurveda Integr Med. 2022 Jan-Mar;13(1):100324 [PMID: 32527713]
  10. Eur J Med Chem. 2018 Oct 5;158:91-105 [PMID: 30205261]
  11. Molecules. 2021 Feb 20;26(4): [PMID: 33672774]
  12. Int J Antimicrob Agents. 2021 Aug;58(2):106372 [PMID: 34116184]
  13. Antioxidants (Basel). 2022 May 19;11(5): [PMID: 35624856]
  14. Anal Chem Insights. 2008 Oct 15;3:135-43 [PMID: 19609397]
  15. Eur J Med Chem. 2019 Sep 15;178:687-704 [PMID: 31228811]
  16. Mar Drugs. 2019 May 10;17(5): [PMID: 31083354]
  17. Mol Phylogenet Evol. 2019 May;134:300-310 [PMID: 30685417]
  18. Bacteriol Rev. 1971 Jun;35(2):171-205 [PMID: 4998365]
  19. Microorganisms. 2021 Dec 28;10(1): [PMID: 35056511]
  20. Bioresour Technol. 2011 Jan;102(1):57-70 [PMID: 20624676]
  21. Anim Nutr. 2020 Jun;6(2):115-123 [PMID: 32542190]
  22. Antibiotics (Basel). 2021 Aug 17;10(8): [PMID: 34439045]
  23. Sci Transl Med. 2020 Jun 24;12(549): [PMID: 32581135]
  24. J Biomol Struct Dyn. 2018 Dec;36(16):4413-4423 [PMID: 29241411]
  25. Antioxidants (Basel). 2021 Feb 19;10(2): [PMID: 33669824]
  26. Curr Pharm Biotechnol. 2023;24(1):23-49 [PMID: 35352658]
  27. J Biomol Struct Dyn. 2022 Mar;40(5):2067-2081 [PMID: 33089730]
  28. ACS Nano. 2020 Aug 25;14(8):10324-10336 [PMID: 32806029]
  29. N Biotechnol. 2020 May 25;56:130-139 [PMID: 31945501]
  30. Entropy (Basel). 2022 May 20;24(5): [PMID: 35626612]
  31. Antibiotics (Basel). 2020 Apr 28;9(5): [PMID: 32353943]
  32. Free Radic Biol Med. 2019 Aug 20;140:93-102 [PMID: 30930298]
  33. 3 Biotech. 2017 Jun;7(2):134 [PMID: 28593520]

Word Cloud

Created with Highcharts 10.0.0extractsantioxidantdockingGC-MSobtainedantioxidantsNR125682NR117881isolatedusingcrudeconstituentsfreeABTS��-lactamaseevaluatedactivity-6molecularCyanobacteriarecenttimestoutedsuitablesourcediscoverynovelcompoundsincludingantibioticsduelargearsenalmetabolitesstudypresentsvitrosilicoevaluationfreshwaterpondsaroundcampusUniversityZululandSouthAfricaisolatesconfirmed16SrRNAVariousmicrobespreparedsequentialextractionhexanedichloromethane70%ethanolchemicalelucidatedFTIRspectroscopypotentialdeterminedradicalDPPHOHFesystemsMolecularmajoralsoanalysisindicateddominatingpresencen-alkanesexhibitedvaryingdegreesscavengingradicalsICrange8-10��g/mLgoodbindingaffinity63Kcal/molorganicchemicalsdiglyceroltetranitrate22-dimethyl-5-3-methyl-2-oxiranylcyclohexanonefollowingactivitiescoupledscorepotentiatesantimicrobialVitroAntioxidantSilicoEvaluationAnti-��-LactamasePotentialExtractscyanobacteria

Similar Articles

Cited By