Strength Training Protects High-Fat-Fed Ovariectomized Mice against Insulin Resistance and Hepatic Steatosis.

Jessica D M Santos, José F T Silva, Ester Dos S Alves, Alessandra G Cruz, Anne R M Santos, Felipe N Camargo, Carlos H Z Talarico, Carlos A A Silva, João Paulo Camporez
Author Information
  1. Jessica D M Santos: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil. ORCID
  2. José F T Silva: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
  3. Ester Dos S Alves: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil. ORCID
  4. Alessandra G Cruz: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil. ORCID
  5. Anne R M Santos: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
  6. Felipe N Camargo: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil. ORCID
  7. Carlos H Z Talarico: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil.
  8. Carlos A A Silva: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil. ORCID
  9. João Paulo Camporez: Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil. ORCID

Abstract

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-Fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and Fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2212-7 [PMID: 26858428]
  2. Life Sci. 2021 Feb 1;266:118868 [PMID: 33310034]
  3. J Physiol Biochem. 2021 May;77(2):273-281 [PMID: 33788149]
  4. Physiol Rep. 2020 Sep;8(17):e14502 [PMID: 32889774]
  5. Int J Mol Sci. 2023 Jun 07;24(12): [PMID: 37372993]
  6. Physiol Res. 2017 May 4;66(2):317-323 [PMID: 27982685]
  7. J Sport Health Sci. 2024 Mar;13(2):145-159 [PMID: 37788790]
  8. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  9. Physiol Rev. 2018 Oct 1;98(4):2133-2223 [PMID: 30067154]
  10. Int J Exerc Sci. 2021 Apr 01;14(7):369-381 [PMID: 34122719]
  11. Metabolism. 2019 Apr;93:1-9 [PMID: 30576689]
  12. Cell. 2015 Feb 12;160(4):745-758 [PMID: 25662011]
  13. Cell. 2021 May 13;184(10):2537-2564 [PMID: 33989548]
  14. Mol Cell Biochem. 2020 Dec;475(1-2):261-276 [PMID: 32852713]
  15. Metabolites. 2022 Oct 08;12(10): [PMID: 36295856]
  16. Nature. 2014 Jun 5;510(7503):84-91 [PMID: 24899308]
  17. Can J Appl Physiol. 2004 Feb;29(1):16-31 [PMID: 15001801]
  18. Clinics (Sao Paulo). 2013 Sep;68(9):1247-54 [PMID: 24141842]
  19. Biochem Biophys Rep. 2019 Aug 08;20:100671 [PMID: 31453385]
  20. Maturitas. 2009 Sep 20;64(1):52-7 [PMID: 19683884]
  21. J Physiol. 2019 Aug;597(15):3885-3903 [PMID: 31206703]
  22. J Endocrinol. 2019 Apr 1;241(1):59-70 [PMID: 30878016]
  23. Endocrinology. 2013 Sep;154(9):3099-109 [PMID: 23766126]
  24. Maturitas. 2008 Mar 20;59(3):259-67 [PMID: 18367352]
  25. Biol Sex Differ. 2018 Jun 27;9(1):28 [PMID: 29950175]
  26. iScience. 2023 Oct 30;26(12):108363 [PMID: 38034347]
  27. Nutrients. 2021 Dec 20;13(12): [PMID: 34960109]
  28. J Cachexia Sarcopenia Muscle. 2022 Oct;13(5):2525-2536 [PMID: 35818664]
  29. Anal Biochem. 1979 Jun;95(2):351-8 [PMID: 36810]
  30. Aging Clin Exp Res. 2020 Jan;32(1):59-66 [PMID: 30830597]
  31. Med Sci Sports Exerc. 2014 Jul;46(7):1293-301 [PMID: 24389523]
  32. Front Physiol. 2021 Sep 30;12:759677 [PMID: 34658936]
  33. Appl Physiol Nutr Metab. 2009 Feb;34(1):60-5 [PMID: 19234586]
  34. Biomed Pharmacother. 2022 Dec;156:113808 [PMID: 36252357]
  35. Front Endocrinol (Lausanne). 2023 Jul 17;14:1215947 [PMID: 37529599]
  36. Sci Rep. 2016 Aug 04;6:31106 [PMID: 27487746]
  37. J Physiol. 2023 Feb;601(3):435-449 [PMID: 36117117]
  38. J Clin Invest. 2016 Nov 1;126(11):4361-4371 [PMID: 27760050]
  39. Obstet Gynecol Clin North Am. 2019 Sep;46(3):501-514 [PMID: 31378291]
  40. Diabetes. 2013 Feb;62(2):424-34 [PMID: 22966069]
  41. Obes Rev. 2023 Oct;24(10):e13605 [PMID: 37544655]
  42. Clin Obstet Gynecol. 2018 Sep;61(3):470-479 [PMID: 29762147]
  43. J Physiol. 2011 May 15;589(Pt 10):2585-96 [PMID: 21486789]
  44. Redox Biol. 2020 Sep;36:101635 [PMID: 32863214]
  45. J Lipid Res. 2015 Mar;56(3):526-536 [PMID: 25548259]
  46. Nat Rev Endocrinol. 2018 Apr;14(4):199-215 [PMID: 29393299]
  47. Biomolecules. 2022 Jun 13;12(6): [PMID: 35740949]
  48. J Nutr Sci. 2014 Feb 13;3:e3 [PMID: 25191611]
  49. Curr Issues Mol Biol. 2022 Oct 08;44(10):4692-4703 [PMID: 36286035]
  50. Nutrients. 2020 Jan 13;12(1): [PMID: 31941004]
  51. Endocrinology. 2013 Mar;154(3):1021-8 [PMID: 23364948]
  52. Life Sci. 2021 Aug 1;278:119639 [PMID: 34043987]
  53. J Hepatol. 2012 Jul;57(1):157-66 [PMID: 22414768]
  54. Obes Rev. 2021 Jul;22 Suppl 4:e13256 [PMID: 33955140]
  55. Obes Rev. 2018 Oct;19(10):1446-1459 [PMID: 30092609]
  56. Nat Med. 2018 Jul;24(7):908-922 [PMID: 29967350]
  57. Einstein (Sao Paulo). 2019 Sep 23;18:eAO4784 [PMID: 31553356]
  58. Eur J Appl Physiol. 2012 Apr;112(4):1437-44 [PMID: 21830097]
  59. Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11285-E11292 [PMID: 29237750]
  60. Sci Rep. 2021 Apr 21;11(1):8574 [PMID: 33883630]
  61. Biol Trace Elem Res. 2022 Feb;200(2):624-634 [PMID: 33656659]
  62. Am J Epidemiol. 2004 Sep 1;160(5):484-91 [PMID: 15321846]
  63. Climacteric. 2024 Feb;27(1):68-74 [PMID: 37224871]

Grants

  1. 2018/04956-5/FAPESP
  2. 313752/2023-0/CNPq
  3. PROEX - 001/CAPES

MeSH Term

Animals
Insulin Resistance
Female
Ovariectomy
Diet, High-Fat
Mice
Resistance Training
Fatty Liver
Physical Conditioning, Animal
Oxidative Stress
Liver
Mice, Inbred C57BL
Body Weight
Lipogenesis

Word Cloud

Created with Highcharts 10.0.0STchangesinsulinmetabolicresistancehepaticmicesedentaryreducedassociatedincludingfattyliverdietStrengthfedHFDsimulatedsurgerytrainedovariectomyOVX-EXEincreasedmenopauseMenopausecharacterizedreductionsexhormoneswomenLifestylebalancedphysicalexercisenecessarypreventundesirabletrainingwidelyusedmusclebenefitsprovidesstudyaimsevaluateeffectssteatosisovariectomizedhigh-fatdividedfourgroupsfollows:SHAM-SEDSHAM-EXEOVX-SED9weeksperformedthriceweekefficientlybodyweightfatpercentageleanmassOVXFurthermoreaccumulationectopiclipidsAMPKphosphorylationinhibiteddenovolipogenesispathwayalsoshowedbetterglycemicprofilegreatersensitivityidentifiedeuglycemic-hyperinsulinemicclampmarkersoxidativestresscomparedanimalsdatasupportideacanindicatednon-pharmacologicaltreatmentapproachmitigateresultingTrainingProtectsHigh-Fat-FedOvariectomizedMiceInsulinResistanceHepaticSteatosisnon-alcoholicdisease

Similar Articles

Cited By