Modulation of Paracellular Permeability in SARS-CoV-2 Blood-to-Brain Transcytosis.

Taylor E Martinez, Karthick Mayilsamy, Shyam S Mohapatra, Subhra Mohapatra
Author Information
  1. Taylor E Martinez: Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. ORCID
  2. Karthick Mayilsamy: Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. ORCID
  3. Shyam S Mohapatra: James A Haley VA Hospital, Tampa, FL 33612, USA. ORCID
  4. Subhra Mohapatra: Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.

Abstract

SARS-CoV-2 primarily infects the lungs via the ACE2 receptor but also other organs including the kidneys, the gastrointestinal tract, the heart, and the skin. SARS-CoV-2 also infects the brain, but the hematogenous route of viral entry to the brain is still not fully characterized. Understanding how SARS-CoV-2 traverses the blood-brain barrier (BBB) as well as how it affects the molecular functions of the BBB are unclear. In this study, we investigated the roles of the receptors ACE2 and DPP4 in the SARS-CoV-2 infection of the discrete cellular components of a transwell BBB model comprising HUVECs, astrocytes, and pericytes. Our results demonstrate that direct infection on the BBB model does not modulate paracellular permeability. Also, our results show that SARS-CoV-2 utilizes clathrin and caveolin-mediated endocytosis to traverse the BBB, resulting in the direct infection of the brain side of the BBB model with a minimal endothelial infection. In conclusion, the BBB is susceptible to SARS-CoV-2 infection in multiple ways, including the direct infection of endothelium, astrocytes, and pericytes involving ACE2 and/or DPP4 and the blood-to-brain transcytosis, which is an event that does not require the presence of host receptors.

Keywords

References

  1. J Histochem Cytochem. 2004 May;52(5):567-79 [PMID: 15100235]
  2. mBio. 2022 Oct 31;13(6):e0230822 [PMID: 36314791]
  3. Brain Res. 2005 Mar 21;1038(2):208-15 [PMID: 15757636]
  4. Virology. 1996 Oct 1;224(1):345-51 [PMID: 8862433]
  5. Mol Ther Methods Clin Dev. 2022 Dec 8;27:217-229 [PMID: 36187720]
  6. Nat Med. 2021 Mar;27(3):546-559 [PMID: 33654293]
  7. Front Physiol. 2020 Sep 23;11:973 [PMID: 33071801]
  8. Lancet Respir Med. 2020 Jul;8(7):687-695 [PMID: 32386571]
  9. Clin Pathol. 2021 Mar 27;14:2632010X211006096 [PMID: 33855294]
  10. Fluids Barriers CNS. 2022 Jun 7;19(1):46 [PMID: 35672716]
  11. Curr Issues Mol Biol. 2023 Jan 04;45(1):400-433 [PMID: 36661514]
  12. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  13. Brain Res. 2000 Mar 6;858(1):172-6 [PMID: 10700611]
  14. J Biomol Struct Dyn. 2022 Feb;40(3):1109-1119 [PMID: 32936048]
  15. Front Neurol. 2021 Jan 20;11:573095 [PMID: 33551947]
  16. Acta Neuropathol. 2023 Nov;146(5):771-775 [PMID: 37624381]
  17. Semin Pediatr Neurol. 2012 Sep;19(3):96-100 [PMID: 22889537]
  18. Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2122236119 [PMID: 35858406]
  19. J Virol. 2022 Apr 27;96(8):e0012822 [PMID: 35343766]
  20. J Cell Biol. 1994 Sep;126(5):1157-72 [PMID: 7914893]
  21. Nature. 2022 Dec;612(7941):758-763 [PMID: 36517603]
  22. Cells. 2023 Mar 06;12(5): [PMID: 36899952]
  23. J Cereb Blood Flow Metab. 2021 Oct;41(10):2546-2560 [PMID: 33818185]
  24. Mol Cell. 2020 May 21;78(4):779-784.e5 [PMID: 32362314]
  25. Nature. 1987 Jan 15-21;325(6101):253-7 [PMID: 3543687]
  26. J Neurochem. 2004 Apr;89(2):503-13 [PMID: 15056293]
  27. Cell Rep. 2020 Oct 13;33(2):108254 [PMID: 33007239]
  28. Ann Diagn Pathol. 2021 Apr;51:151682 [PMID: 33360731]
  29. Trends Neurosci. 2022 May;45(5):358-368 [PMID: 35279295]
  30. Life Sci. 2022 Nov 1;308:120930 [PMID: 36075471]
  31. J Neuroimmune Pharmacol. 2021 Dec;16(4):722-728 [PMID: 34687399]
  32. J Biol Chem. 2021 Jan-Jun;296:100306 [PMID: 33476648]
  33. Acta Pharmacol Sin. 2020 Sep;41(9):1141-1149 [PMID: 32747721]
  34. Int J Oncol. 2020 Aug;57(2):533-539 [PMID: 32468052]
  35. Nature. 2022 Mar;603(7902):706-714 [PMID: 35104837]
  36. J Virol. 2005 Aug;79(15):9470-9 [PMID: 16014910]
  37. Mol Med Rep. 2020 Nov;22(5):4221-4226 [PMID: 33000221]
  38. Sci Rep. 2017 Aug 14;7(1):8083 [PMID: 28808270]
  39. Trends Microbiol. 2012 Jun;20(6):282-90 [PMID: 22564250]
  40. Neurol Neuroimmunol Neuroinflamm. 2020 Sep 25;7(6): [PMID: 32978291]
  41. Glia. 1997 Jan;19(1):13-26 [PMID: 8989564]
  42. Mol Neurobiol. 2021 Feb;58(2):520-535 [PMID: 32978729]
  43. Tissue Barriers. 2016 Jan 28;4(1):e1143544 [PMID: 27141424]
  44. Rev Med Virol. 2023 Jan;33(1):e2403 [PMID: 36345157]
  45. Cell Rep. 2022 Nov 1;41(5):111573 [PMID: 36288725]
  46. Neurol Neurochir Pol. 2023;57(1):14-25 [PMID: 36810757]
  47. Autophagy. 2016 Dec;12(12):2504-2505 [PMID: 27786577]
  48. Brain Behav Immun. 2023 Mar;109:251-268 [PMID: 36682515]
  49. Nat Neurosci. 2021 Feb;24(2):168-175 [PMID: 33257876]
  50. Cold Spring Harb Perspect Biol. 2015 Jan 05;7(1):a020412 [PMID: 25561720]
  51. J Neuroinflammation. 2023 Aug 3;20(1):184 [PMID: 37537664]
  52. Biomedicines. 2022 Jan 17;10(1): [PMID: 35052867]
  53. J Cell Sci. 1994 May;107 ( Pt 5):1347-57 [PMID: 7929640]
  54. Nat Biotechnol. 2018 Oct;36(9):865-874 [PMID: 30125269]
  55. Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H179-88 [PMID: 19855054]
  56. Pharmacol Ther. 2020 Sep;213:107554 [PMID: 32320731]
  57. J Immunol. 2006 Jun 15;176(12):7666-75 [PMID: 16751414]
  58. Cell Host Microbe. 2020 May 13;27(5):841-848.e3 [PMID: 32289263]
  59. PLoS One. 2012;7(5):e38149 [PMID: 22675443]
  60. Int J Mol Sci. 2023 May 11;24(10): [PMID: 37239978]
  61. ACS Cent Sci. 2021 Jul 28;7(7):1156-1165 [PMID: 34341769]
  62. Front Oncol. 2020 Nov 16;10:566599 [PMID: 33312949]
  63. Front Immunol. 2021 Sep 07;12:636966 [PMID: 34557180]
  64. Inflammopharmacology. 2021 Aug;29(4):939-963 [PMID: 33822324]
  65. Stroke. 2013 May;44(5):1402-9 [PMID: 23449265]
  66. J Neuroinflammation. 2022 Jun 15;19(1):149 [PMID: 35705998]
  67. Biochem Biophys Res Commun. 2022 Oct 20;626:66-71 [PMID: 35970046]
  68. Stem Cell Reports. 2022 Feb 8;17(2):307-320 [PMID: 35063125]
  69. J Cereb Blood Flow Metab. 2021 Sep;41(9):2185-2200 [PMID: 33970018]
  70. Int J Biol Macromol. 2023 Aug 1;245:125444 [PMID: 37385308]
  71. J Virol. 1994 Dec;68(12):7966-73 [PMID: 7966587]
  72. J Virol. 2000 Oct;74(19):9234-9 [PMID: 10982370]
  73. APMIS. 2021 Feb;129(2):37-54 [PMID: 33098147]
  74. Front Bioeng Biotechnol. 2020 Jun 25;8:647 [PMID: 32671044]
  75. Cell Res. 2020 Oct;30(10):928-931 [PMID: 32753756]
  76. Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20 [PMID: 34611326]
  77. Int J Biochem Cell Biol. 2011 Sep;43(9):1284-93 [PMID: 21601005]
  78. Lab Chip. 2017 Jan 31;17(3):448-459 [PMID: 28001148]
  79. iScience. 2020 Jun 26;23(6):101160 [PMID: 32405622]
  80. Nat Biomed Eng. 2023 Jun 22;: [PMID: 37349391]
  81. Microbiol Spectr. 2021 Oct 31;9(2):e0119921 [PMID: 34494876]
  82. Pflugers Arch. 2020 Sep;472(9):1299-1343 [PMID: 32789766]
  83. Signal Transduct Target Ther. 2021 Sep 6;6(1):337 [PMID: 34489403]
  84. Nat Neurosci. 2021 Mar;24(3):368-378 [PMID: 33328624]
  85. Viruses. 2023 Oct 06;15(10): [PMID: 37896834]
  86. Genes Dev. 2018 Apr 1;32(7-8):466-478 [PMID: 29692355]
  87. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  88. J Clin Med. 2021 Aug 25;10(17): [PMID: 34501242]
  89. Nat Commun. 2019 Oct 25;10(1):4884 [PMID: 31653848]
  90. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4): [PMID: 35022217]
  91. Acta Pharmacol Sin. 2023 Apr;44(4):695-709 [PMID: 36253560]
  92. mBio. 2020 Nov 6;11(6): [PMID: 33158999]
  93. Front Physiol. 2021 Mar 30;12:645646 [PMID: 33868013]
  94. mBio. 2021 Jan 19;12(1): [PMID: 33468702]
  95. Cell Res. 2022 Jan;32(1):1-2 [PMID: 34903854]
  96. Lancet Microbe. 2020 May;1(1):e14-e23 [PMID: 32835326]

Grants

  1. IK6BX004212/United States Department of Veterans Affairs
  2. IK6BX006032/United States Department of Veterans Affairs
  3. 22K09/Florida Department of Health
  4. BX005490/United States Department of Veterans Affairs

MeSH Term

Blood-Brain Barrier
Humans
SARS-CoV-2
Transcytosis
Angiotensin-Converting Enzyme 2
Pericytes
COVID-19
Virus Internalization
Astrocytes
Dipeptidyl Peptidase 4
Brain
Endocytosis
Human Umbilical Vein Endothelial Cells
Permeability

Chemicals

Angiotensin-Converting Enzyme 2
ACE2 protein, human
Dipeptidyl Peptidase 4
DPP4 protein, human

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2BBBinfectionACE2brainDPP4modeldirectinfectsalsoincludingblood-brainbarrierreceptorsastrocytespericytesresultspermeabilitytranscytosisprimarilylungsviareceptororganskidneysgastrointestinaltractheartskinhematogenousrouteviralentrystillfullycharacterizedUnderstandingtraverseswellaffectsmolecularfunctionsunclearstudyinvestigatedrolesdiscretecellularcomponentstranswellcomprisingHUVECsdemonstratemodulateparacellularAlsoshowutilizesclathrincaveolin-mediatedendocytosistraverseresultingsideminimalendothelialconclusionsusceptiblemultiplewaysendotheliuminvolvingand/orblood-to-braineventrequirepresencehostModulationParacellularPermeabilityBlood-to-BrainTranscytosisneurovascularunit

Similar Articles

Cited By

No available data.