Development of a Candidate TMV Epitope Display Vaccine against SARS-CoV-2.

Kelvin Phiri, Larry Grill
Author Information
  1. Kelvin Phiri: Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA. ORCID
  2. Larry Grill: Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA.

Abstract

Essential in halting the COVID-19 pandemic caused by SARS-CoV-2, it is crucial to have stable, effective, and easy-to-manufacture vaccines. We developed a potential vaccine using a tobacco mosaic virus (TMV) epitope display model presenting peptides derived from the SARS-CoV-2 spike protein. The TMV-epitope fusions in laboratory tests demonstrated binding to the SARS-CoV-2 polyclonal antibodies. The fusion constructs maintained critical epitopes of the SARS-CoV-2 spike protein, and two in particular spanned regions of the receptor-binding domain that have mutated in the more recent SARS-CoV-2 variants. This would allow for the rapid modification of vaccines in response to changes in circulating variants. The TMV-peptide fusion constructs also remained stable for over 28 days when stored at temperatures between -20 and 37 °C, an ideal property when targeting developing countries. Immunogenicity studies conducted on BALB/c mice elicited robust antibody responses against SARS-CoV-2. A strong IFNγ response was also observed in immunized mice. Three of the six TMV-peptide fusion constructs produced virus-neutralizing titers, as measured with a pseudovirus neutralization assay. These TMV-peptide fusion constructs can be combined to make a multivalent vaccine that could be adapted to meet changing virus variants. These findings demonstrate the development of a stable COVID-19 vaccine candidate by combining SARS-CoV-2 spike protein-derived peptides presented on the surface of a TMV nanoparticle.

Keywords

References

  1. Vaccine. 2006 Sep 29;24(40-41):6414-23 [PMID: 16860441]
  2. Vaccines (Basel). 2022 Oct 26;10(11): [PMID: 36366311]
  3. Vaccine. 2003 Oct 1;21(27-30):4390-8 [PMID: 14505922]
  4. Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3114-3122 [PMID: 31988134]
  5. Virol J. 2020 Mar 31;17(1):43 [PMID: 32234060]
  6. J Gen Virol. 2023 Apr;104(4): [PMID: 37097842]
  7. Virology. 2006 May 10;348(2):475-88 [PMID: 16466765]
  8. Virology. 1999 Mar 15;255(2):312-23 [PMID: 10069957]
  9. PLoS One. 2023 Jan 20;18(1):e0280627 [PMID: 36662754]
  10. Methods Protoc. 2018 Jan 22;1(1): [PMID: 31164554]
  11. Clin Immunol. 2016 Jul;168:72-87 [PMID: 26987887]
  12. Plant Physiol. 2007 Dec;145(4):1232-40 [PMID: 17720752]
  13. Methods Mol Biol. 1998;81:123-9 [PMID: 9760499]
  14. J Cell Physiol. 2019 Aug;234(8):12530-12536 [PMID: 30633361]
  15. Hum Vaccin. 2011 Mar;7(3):305-12 [PMID: 21346416]
  16. Pathog Dis. 2022 Feb 9;80(1): [PMID: 34994386]
  17. Vaccine. 2006 Jun 29;24(26):5498-508 [PMID: 16725238]
  18. Nature. 2021 Mar;591(7849):293-299 [PMID: 33494095]
  19. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17678-83 [PMID: 17090664]
  20. Infect Immun. 2005 Dec;73(12):8425-8 [PMID: 16299343]
  21. Plant Biotechnol J. 2010 Jun;8(5):620-37 [PMID: 20233333]
  22. Viruses. 2021 Dec 17;13(12): [PMID: 34960806]
  23. Nat Rev Microbiol. 2021 Mar;19(3):155-170 [PMID: 33116300]
  24. Vaccines (Basel). 2023 Mar 14;11(3): [PMID: 36992232]
  25. Virol J. 2005 Aug 25;2:73 [PMID: 16122388]
  26. J Mol Biol. 1999 Jul 2;290(1):9-20 [PMID: 10388554]
  27. Viruses. 2020 Feb 25;12(3): [PMID: 32106567]
  28. Expert Rev Vaccines. 2008 Feb;7(1):33-41 [PMID: 18251692]
  29. Vaccine. 2021 Apr 15;39(16):2190-2200 [PMID: 33771389]
  30. Vaccines (Basel). 2021 Nov 17;9(11): [PMID: 34835278]
  31. Indian J Med Res. 2022 Jan;155(1):91-104 [PMID: 35859436]
  32. Int J Biol Sci. 2021 Apr 10;17(6):1574-1580 [PMID: 33907521]
  33. Front Cell Infect Microbiol. 2013 Mar 25;3:13 [PMID: 23532930]
  34. Vaccines (Basel). 2015 Aug 05;3(3):620-37 [PMID: 26350598]
  35. Org Biomol Chem. 2007 Sep 21;5(18):2891-902 [PMID: 17728853]
  36. Bioconjug Chem. 2006 Sep-Oct;17(5):1330-8 [PMID: 16984144]
  37. PLoS One. 2022 Oct 17;17(10):e0276241 [PMID: 36251675]
  38. PLoS One. 2015 Jun 22;10(6):e0130858 [PMID: 26098553]
  39. Biotechnology (N Y). 1995 Jan;13(1):53-7 [PMID: 9634749]
  40. Vaccine. 2014 Jul 16;32(33):4228-33 [PMID: 24923637]
  41. J Biochem Biophys Methods. 2003 Sep 30;57(3):213-36 [PMID: 14512156]
  42. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul;9(4): [PMID: 28078770]
  43. Antiviral Res. 2022 Mar;199:105271 [PMID: 35240221]
  44. Nat Commun. 2023 Jun 10;14(1):3440 [PMID: 37301910]
  45. Virusdisease. 2022 Mar;33(1):1-22 [PMID: 35127995]
  46. Sci Rep. 2020 Jun 25;10(1):10365 [PMID: 32587281]
  47. Nat Commun. 2020 Jun 1;11(1):2806 [PMID: 32483236]
  48. PLoS One. 2019 Jun 5;14(6):e0216533 [PMID: 31166987]
  49. Microorganisms. 2021 Aug 16;9(8): [PMID: 34442823]
  50. Cell Mol Immunol. 2022 Jul;19(7):848-851 [PMID: 35676326]
  51. Vaccine. 2015 Nov 27;33(48):6745-51 [PMID: 26514421]
  52. Clin Microbiol Infect. 2020 Jun;26(6):729-734 [PMID: 32234451]
  53. Eur J Immunol. 2010 Aug;40(8):2211-20 [PMID: 20540114]
  54. Front Plant Sci. 2015 Nov 10;6:984 [PMID: 26617624]
  55. Methods Mol Biol. 2014;1108:173-85 [PMID: 24243249]

Grants

  1. /Gift from Dr S Glanville

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2vaccinespikefusionconstructsstablevirusTMVproteinvariantsTMV-peptideCOVID-19vaccinestobaccomosaicepitopedisplaypeptidesresponsealsomiceEssentialhaltingpandemiccausedcrucialeffectiveeasy-to-manufacturedevelopedpotentialusingmodelpresentingderivedTMV-epitopefusionslaboratorytestsdemonstratedbindingpolyclonalantibodiesmaintainedcriticalepitopestwoparticularspannedregionsreceptor-bindingdomainmutatedrecentallowrapidmodificationchangescirculatingremained28daysstoredtemperatures-2037°CidealpropertytargetingdevelopingcountriesImmunogenicitystudiesconductedBALB/celicitedrobustantibodyresponsesstrongIFNγobservedimmunizedThreesixproducedvirus-neutralizingtitersmeasuredpseudovirusneutralizationassaycancombinedmakemultivalentadaptedmeetchangingfindingsdemonstratedevelopmentcandidatecombiningprotein-derivedpresentedsurfacenanoparticleDevelopmentCandidateEpitopeDisplayVaccineNicotianabenthamiana

Similar Articles

Cited By