Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water-Steam Distillation of Oil-Bearing Roses L. and L. from Bulgaria.

Svetla Gateva, Gabriele Jovtchev, Tsveta Angelova, Tsvetelina Gerasimova, Ana Dobreva, Milka Mileva
Author Information
  1. Svetla Gateva: Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria. ORCID
  2. Gabriele Jovtchev: Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria.
  3. Tsveta Angelova: Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria.
  4. Tsvetelina Gerasimova: Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria. ORCID
  5. Ana Dobreva: Institute for Roses and Aromatic Plants, Agricultural Academy, 49 Osvobojdenie Blvd., 6100 Kazanlak, Bulgaria. ORCID
  6. Milka Mileva: Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria. ORCID

Abstract

L. and L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was to provide information on their cytotoxic/genotoxic activity and anti-cytotoxic/anti-genotoxic capacity against mutagenic -methyl-'-nitro--nitrosoguanidine (MNNG). The evaluation was performed using classical tests for chromosomal aberrations and micronuclei in the higher plant and human lymphocyte test systems. The experimental schemes included combined hydrosol and mutagen treatment. Both hydrosols (6, 14, 20%) had no cytotoxic effect on barley and showed low genotoxicity in both test systems as the injuries were enhanced to a lesser extent compared to the controls. Lymphocytes were more susceptible than . Under the conditions of combined treatment, it was found that the two hydrosols possessed good anti-cytotoxic and anti-genotoxic potential against MNNG. Both rose products exerted genoprotective potential to a similar extent, decreasing the frequencies of aberrations in chromosomes and micronuclei to a significant degree in both types of cells when non-toxic concentrations of hydrosols were applied before MNNG. This was performed both with and without any inter-treatment time. The observed cytoprotective/genoprotective potential suggests that these hydrosols are promising for further application in phytotherapy and medicine.

Keywords

References

  1. Am J Pathol. 1989 Jan;134(1):53-61 [PMID: 2913827]
  2. Cell Cycle. 2010 Jan 1;9(1):168-78 [PMID: 20016283]
  3. Plant Physiol. 2000 Oct;124(2):507-14 [PMID: 11027701]
  4. J Pharmacol Exp Ther. 2002 May;301(2):625-30 [PMID: 11961066]
  5. Cancer Cell Int. 2022 Dec 13;22(1):407 [PMID: 36514100]
  6. Food Sci Biotechnol. 2019 Mar 26;28(5):1439-1446 [PMID: 31695942]
  7. J Food Sci. 2013 Jun;78(6):H948-54 [PMID: 23627876]
  8. Phytother Res. 2001 Nov;15(7):618-20 [PMID: 11746845]
  9. Heliyon. 2023 Nov 30;9(12):e23065 [PMID: 38125544]
  10. Antioxidants (Basel). 2021 Oct 22;10(11): [PMID: 34829534]
  11. Pharm Biol. 2014 Oct;52(10):1358-61 [PMID: 24863280]
  12. J Ethnopharmacol. 2015 Apr 2;163:68-82 [PMID: 25596353]
  13. Biochim Biophys Acta. 1979 Mar 28;562(1):51-61 [PMID: 373805]
  14. Molecules. 2021 Aug 18;26(16): [PMID: 34443579]
  15. Mutat Res. 2001 Apr 18;475(1-2):89-111 [PMID: 11295156]
  16. Biochem Pharmacol. 2011 Feb 1;81(3):459-70 [PMID: 21056551]
  17. Zhong Xi Yi Jie He Xue Bao. 2011 Oct;9(10):1118-24 [PMID: 22015194]
  18. Ayu. 2015 Jul-Sep;36(3):341-5 [PMID: 27313424]
  19. J Nucleic Acids. 2010 Nov 21;2010:543531 [PMID: 21113301]
  20. Food Res Int. 2015 Oct;76(Pt 3):576-586 [PMID: 28455040]
  21. Iran J Basic Med Sci. 2011 Jul;14(4):295-307 [PMID: 23493250]
  22. Life (Basel). 2022 Sep 19;12(9): [PMID: 36143488]
  23. Curr Microbiol. 2009 Nov;59(5):554-8 [PMID: 19688375]
  24. J Toxicol Environ Health A. 2021 Jun 18;84(12):518-528 [PMID: 33761836]
  25. Molecules. 2020 Nov 04;25(21): [PMID: 33158043]
  26. J Tradit Complement Med. 2015 Oct 30;6(1):10-6 [PMID: 26870673]
  27. Mutat Res. 2002 May 27;517(1-2):47-51 [PMID: 12034308]
  28. Maedica (Bucur). 2011 Jul;6(3):173-8 [PMID: 22368693]
  29. Plants (Basel). 2022 Jan 27;11(3): [PMID: 35161330]
  30. J Evid Based Complementary Altern Med. 2017 Oct;22(4):824-839 [PMID: 28701045]
  31. Food Sci Nutr. 2018 Oct 25;6(8):2560-2567 [PMID: 30510758]
  32. Basic Clin Pharmacol Toxicol. 2010 Jan;106(1):38-44 [PMID: 19796276]
  33. ACS Omega. 2023 Sep 28;8(40):37128-37139 [PMID: 37841186]
  34. Life (Basel). 2023 Aug 16;13(8): [PMID: 37629611]
  35. Antioxidants (Basel). 2022 Jul 18;11(7): [PMID: 35883882]
  36. Molecules. 2021 Oct 27;26(21): [PMID: 34770907]
  37. Adv Pharmacol Pharm Sci. 2022 Nov 23;2022:8002766 [PMID: 36465700]
  38. Environ Toxicol. 2010 Jun;25(3):294-303 [PMID: 19437450]
  39. Heliyon. 2022 Nov 03;8(11):e11434 [PMID: 36387498]
  40. Nat Prod Res. 2015;29(16):1562-6 [PMID: 25427632]
  41. Interdiscip Toxicol. 2015 Dec;8(4):184-92 [PMID: 27486380]
  42. Biomol Ther (Seoul). 2016 Mar 1;24(2):184-90 [PMID: 26797110]
  43. J Med Food. 2020 Aug;23(8):870-878 [PMID: 32609563]
  44. BMC Complement Med Ther. 2020 Mar 6;20(1):69 [PMID: 32143607]
  45. Biol Pharm Bull. 2017;40(2):161-168 [PMID: 28154255]
  46. Molecules. 2020 Mar 17;25(6): [PMID: 32192161]
  47. Nat Protoc. 2007;2(5):1084-104 [PMID: 17546000]
  48. J Agric Food Chem. 2007 Jul 25;55(15):6300-8 [PMID: 17602646]

Word Cloud

Created with Highcharts 10.0.0hydrosolsLpotentialMNNGaberrationsmicronucleitestsystemsgenoprotectiveperformedcombinedtreatmentextentanti-cytotoxicanti-genotoxicRosaRosaceaegrownrawmaterialsvaluableessentialoilsscarcedatabiologicalactivitiesrosesaimstudyprovideinformationcytotoxic/genotoxicactivityanti-cytotoxic/anti-genotoxiccapacitymutagenic-methyl-'-nitro--nitrosoguanidineevaluationusingclassicaltestschromosomalhigherplanthumanlymphocyteexperimentalschemesincludedhydrosolmutagen61420%cytotoxiceffectbarleyshowedlowgenotoxicityinjuriesenhancedlessercomparedcontrolsLymphocytessusceptibleconditionsfoundtwopossessedgoodroseproductsexertedsimilardecreasingfrequencieschromosomessignificantdegreetypescellsnon-toxicconcentrationsappliedwithoutinter-treatmenttimeobservedcytoprotective/genoprotectivesuggestspromisingapplicationphytotherapymedicineGenotoxicAnti-GenotoxicPotentialHydrosolsWater-SteamDistillationOil-BearingRosesBulgariacentifoliagallicachromosome

Similar Articles

Cited By