Does climate change increase the risk of marine toxins? Insights from changing seawater conditions.

Ruiyang Meng, Xingde Du, Kangfeng Ge, Chunrui Wu, Zongxin Zhang, Xiao Liang, Jun Yang, Huizhen Zhang
Author Information
  1. Ruiyang Meng: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  2. Xingde Du: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  3. Kangfeng Ge: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  4. Chunrui Wu: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  5. Zongxin Zhang: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  6. Xiao Liang: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  7. Jun Yang: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
  8. Huizhen Zhang: College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. huizhen18@126.com. ORCID

Abstract

Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.

Keywords

References

  1. Alc��ntara-Rubira A, B��rcena-Mart��nez V, Reyes-Paulino M et al (2018) First report of okadaic acid and pectenotoxins in individual cells of Dinophysis and in Scallops Argopecten purpuratus from Per��. Toxins (basel) 10:490. https://doi.org/10.3390/toxins10120490 [DOI: 10.3390/toxins10120490]
  2. Amzil Z, Sibat M, Chomerat N et al (2012) Ovatoxin-A and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean Coast. Mar Drugs 10:477���496. https://doi.org/10.3390/md10020477 [DOI: 10.3390/md10020477]
  3. Amzil Z, Derrien A, Terre Terrillon A et al (2021) Monitoring the emergence of algal toxins in shellfish: first report on detection of brevetoxins in French Mediterranean Mussels. Mar Drugs 19:393. https://doi.org/10.3390/md19070393 [DOI: 10.3390/md19070393]
  4. Anderson D, Stolzenbach K (1985) Selective retention of two dinoflagellates in a well-mixed estuarine embayment: the importance of diel vertical migration and surface avoidance. Mar Ecol Prog Ser 25:39���50. https://doi.org/10.3354/meps025039 [DOI: 10.3354/meps025039]
  5. Anderson DM, Wall D (1978) Potential importance of benthic cysts of Gonyaulax tamarensis and G. excavata in initiating toxic dinoflagellate blooms1,2,3. J Phycol 14:224���234. https://doi.org/10.1111/j.1529-8817.1978.tb02452.x [DOI: 10.1111/j.1529-8817.1978.tb02452.x]
  6. Antonelli P, Salerno B, Bordin P et al (2022) Tetrodotoxin in live bivalve mollusks from Europe: is it to be considered an emerging concern for food safety? Compr Rev Food Sci Food Saf 21:719���737. https://doi.org/10.1111/1541-4337.12881 [DOI: 10.1111/1541-4337.12881]
  7. Ar��oz R, Barnes P, S��chet V et al (2020) Cyclic imine toxins survey in coastal European shellfish samples: bioaccumulation and mode of action of 28-O-palmitoyl ester of pinnatoxin-G. First report of portimine-A bioaccumulation. Harmful Algae 98:101887. https://doi.org/10.1016/j.hal.2020.101887 [DOI: 10.1016/j.hal.2020.101887]
  8. Arbel��ez MN, Mancera-Pineda JE, Reguera B (2020) Structural variation of potentially toxic epiphytic dinoflagellates on Thalassia testudinum from two coastal systems of Colombian Caribbean. Harmful Algae 92:101738. https://doi.org/10.1016/j.hal.2019.101738 [DOI: 10.1016/j.hal.2019.101738]
  9. Arneth A, Shin Y-J, Leadley P et al (2020) Post-2020 biodiversity targets need to embrace climate change. Proc Natl Acad Sci U S A 117:30882���30891. https://doi.org/10.1073/pnas.2009584117 [DOI: 10.1073/pnas.2009584117]
  10. Arnett MV, Lim JT (2007) Ciguatera fish poisoning: impact for the military health care provider. Mil Med 172:1012���1015. https://doi.org/10.7205/MILMED.172.9.1012 [DOI: 10.7205/MILMED.172.9.1012]
  11. Bacchiocchi S, Siracusa M, Campacci D et al (2020) Cyclic imines (CIs) in mussels from North-Central Adriatic Sea: first evidence of gymnodimine A in Italy. Toxins (basel) 12:370. https://doi.org/10.3390/toxins12060370 [DOI: 10.3390/toxins12060370]
  12. Baker DM, Freeman CJ, Wong JCY et al (2018) Climate change promotes parasitism in a coral symbiosis. ISME J 12:921���930. https://doi.org/10.1038/s41396-018-0046-8 [DOI: 10.1038/s41396-018-0046-8]
  13. Baliu-Rodriguez D, Peraino NJ, Premathilaka SH et al (2022) Identification of novel microcystins using high-resolution MS and MS n with python code. Environ Sci Technol. https://doi.org/10.1021/acs.est.1c04296 [DOI: 10.1021/acs.est.1c04296]
  14. Bane V, Lehane M, Dikshit M et al (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins 6:693���755. https://doi.org/10.3390/toxins6020693 [DOI: 10.3390/toxins6020693]
  15. Barua A, Ajani PA, Ruvindy R et al (2020) First detection of paralytic shellfish toxins from Alexandrium pacificum above the regulatory limit in blue mussels (Mytilus galloprovincialis) in New South Wales, Australia. Microorganisms 8:905. https://doi.org/10.3390/microorganisms8060905 [DOI: 10.3390/microorganisms8060905]
  16. Basti L, Suzuki T, Uchida H et al (2018) Thermal acclimation affects growth and lipophilic toxin production in a strain of cosmopolitan harmful alga Dinophysis acuminata. Harmful Algae 73:119���128. https://doi.org/10.1016/j.hal.2018.02.004 [DOI: 10.1016/j.hal.2018.02.004]
  17. Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26���40. https://doi.org/10.2216/i0031-8884-43-1-26.1 [DOI: 10.2216/i0031-8884-43-1-26.1]
  18. Beardall J, Stojkovic S, Larsen S (2009) Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecol Divers 2:191���205. https://doi.org/10.1080/17550870903271363 [DOI: 10.1080/17550870903271363]
  19. Ben Rais Lasram F, Mouillot D (2009) Increasing southern invasion enhances congruence between endemic and exotic Mediterranean fish fauna. Biol Invasions 11:697���711. https://doi.org/10.1007/s10530-008-9284-4 [DOI: 10.1007/s10530-008-9284-4]
  20. Ben-Gigirey B, Rossignoli AE, Riob�� P, Rodr��guez F (2020) First report of paralytic shellfish toxins in marine invertebrates and fish in Spain. Toxins (basel) 12:723. https://doi.org/10.3390/toxins12110723 [DOI: 10.3390/toxins12110723]
  21. Bentur Y, Ashkar J, Lurie Y et al (2008) Lessepsian migration and tetrodotoxin poisoning due to Lagocephalus sceleratus in the eastern Mediterranean. Toxicon 52:964���968. https://doi.org/10.1016/j.toxicon.2008.10.001 [DOI: 10.1016/j.toxicon.2008.10.001]
  22. Biessy L, Smith KF, Harwood DT et al (2019) Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand. Toxicon X 2:100008. https://doi.org/10.1016/j.toxcx.2019.100008 [DOI: 10.1016/j.toxcx.2019.100008]
  23. Boivin-Rioux A, Starr M, Chass�� J et al (2022) Harmful algae and climate change on the Canadian East Coast: exploring occurrence predictions of Dinophysis acuminata, D. norvegica, and Pseudo-nitzschia seriata. Harmful Algae 112:102183. https://doi.org/10.1016/j.hal.2022.102183 [DOI: 10.1016/j.hal.2022.102183]
  24. Borges FO, Lopes VM, Santos CF et al (2022) Impacts of climate change on the biogeography of three amnesic shellfish toxin producing diatom species. Toxins (basel) 15:9. https://doi.org/10.3390/toxins15010009 [DOI: 10.3390/toxins15010009]
  25. Botana LM (2016) Toxicological perspective on climate change: aquatic toxins. Chem Res Toxicol 29:619���625. https://doi.org/10.1021/acs.chemrestox.6b00020 [DOI: 10.1021/acs.chemrestox.6b00020]
  26. Bouquet A, Laabir M, Rolland JL et al (2022) Prediction of Alexandrium and Dinophysis algal blooms and shellfish contamination in French Mediterranean Lagoons using decision trees and linear regression: a result of 10 years of sanitary monitoring. Harmful Algae 115:102234. https://doi.org/10.1016/j.hal.2022.102234 [DOI: 10.1016/j.hal.2022.102234]
  27. Braidy N, Matin A, Rossi F et al (2014) Neuroprotective effects of rosmarinic acid on ciguatoxin in primary human neurons. Neurotox Res 25:226���234. https://doi.org/10.1007/s12640-013-9429-9 [DOI: 10.1007/s12640-013-9429-9]
  28. Brutemark A, Vandelannoote A, Engstr��m-��st J, Suikkanen S (2015) A less saline Baltic Sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy. PLoS ONE 10:e0128904. https://doi.org/10.1371/journal.pone.0128904 [DOI: 10.1371/journal.pone.0128904]
  29. Bucciarelli GM, Lechner M, Fontes A et al (2021) From poison to promise: the evolution of tetrodotoxin and its potential as a therapeutic. Toxins 13:517. https://doi.org/10.3390/toxins13080517 [DOI: 10.3390/toxins13080517]
  30. Caillaud A, de la Iglesia P, Darius HT et al (2010) Update on methodologies available for ciguatoxin determination: perspectives to confront the onset of ciguatera fish poisoning in Europe. Mar Drugs 8:1838���1907. https://doi.org/10.3390/md8061838 [DOI: 10.3390/md8061838]
  31. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365. https://doi.org/10.1038/425365a [DOI: 10.1038/425365a]
  32. Campana SE, Stef��nsd��ttir RB, Jakobsd��ttir K, S��lmundsson J (2020) Shifting fish distributions in warming sub-Arctic oceans. Sci Rep 10:16448. https://doi.org/10.1038/s41598-020-73444-y [DOI: 10.1038/s41598-020-73444-y]
  33. Carnicer O, Garc��a-Altares M, Andree KB et al (2016) Ostreopsis cf. ovata from western Mediterranean Sea: physiological responses under different temperature and salinity conditions. Harmful Algae 57:98���108. https://doi.org/10.1016/j.hal.2016.06.002 [DOI: 10.1016/j.hal.2016.06.002]
  34. Chain (CONTAM) EP on C in the F, Knutsen HK, Alexander J et al (2017) Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. EFSA J 15. https://doi.org/10.2903/j.efsa.2017.4752
  35. Chen J, Xie P, Li L, Xu J (2009) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci 108:81���89. https://doi.org/10.1093/toxsci/kfp009 [DOI: 10.1093/toxsci/kfp009]
  36. Chust G, Villarino E, McLean M et al (2024) Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas. Nat Commun 15:2126. https://doi.org/10.1038/s41467-024-46526-y [DOI: 10.1038/s41467-024-46526-y]
  37. Ciminiello P, Dell���Aversano C, Iacovo ED et al (2014) First finding of Ostreopsis cf. ovata toxins in marine aerosols. Environ Sci Technol 48:3532���3540. https://doi.org/10.1021/es405617d [DOI: 10.1021/es405617d]
  38. Dai T, Wen D, Bates CT et al (2022) Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nat Commun 13:175. https://doi.org/10.1038/s41467-021-27857-6 [DOI: 10.1038/s41467-021-27857-6]
  39. Danovaro R, Fonda Umani S, Pusceddu A (2009) Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS ONE 4:e7006. https://doi.org/10.1371/journal.pone.0007006 [DOI: 10.1371/journal.pone.0007006]
  40. Davidson K, Baker C, Higgins C et al (2015) Potential threats posed by new or emerging marine biotoxins in UK waters and examination of detection methodologies used for their control: cyclic imines. Mar Drugs 13:7087���7112. https://doi.org/10.3390/md13127057 [DOI: 10.3390/md13127057]
  41. Deeds JR, Wiles K, Heideman GB et al (2010) First U.S. report of shellfish harvesting closures due to confirmed okadaic acid in Texas Gulf coast oysters. Toxicon 55:1138���1146. https://doi.org/10.1016/j.toxicon.2010.01.003 [DOI: 10.1016/j.toxicon.2010.01.003]
  42. Deng T, Chau K-W, Duan H-F (2021) Machine learning based marine water quality prediction for coastal hydro-environment management. J Environ Manag 284:112051. https://doi.org/10.1016/j.jenvman.2021.112051 [DOI: 10.1016/j.jenvman.2021.112051]
  43. Des M, Fern��ndez-N��voa D, deCastro M et al (2021) Modeling salinity drop in estuarine areas under extreme precipitation events within a context of climate change: Effect on bivalve mortality in Galician R��as Baixas. Sci Total Environ 790:148147. https://doi.org/10.1016/j.scitotenv.2021.148147 [DOI: 10.1016/j.scitotenv.2021.148147]
  44. D��az PA, ��lvarez G, Seguel M et al (2020) First detection of pectenotoxin-2 in shellfish associated with an intense spring bloom of Dinophysis acuminata on the central Chilean coast. Mar Pollut Bull 158:111414. https://doi.org/10.1016/j.marpolbul.2020.111414 [DOI: 10.1016/j.marpolbul.2020.111414]
  45. D��az-Asencio L, Chamero-Lago D, Rojas-Abrahantes GL et al (2024) Establishing a receptor binding assay for ciguatoxins: challenges, assay performance and application. Toxins (basel) 16:60. https://doi.org/10.3390/toxins16010060 [DOI: 10.3390/toxins16010060]
  46. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325���347. https://doi.org/10.1146/annurev-neuro-060909-153234 [DOI: 10.1146/annurev-neuro-060909-153234]
  47. Dittmann E, B��rner T (2005) Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 203:192���200. https://doi.org/10.1016/j.taap.2004.06.008 [DOI: 10.1016/j.taap.2004.06.008]
  48. Doney SC, Ruckelshaus M, Emmett Duffy J et al (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11���37. https://doi.org/10.1146/annurev-marine-041911-111611 [DOI: 10.1146/annurev-marine-041911-111611]
  49. Eisenbl��tter A, Lewis R, D��rfler A et al (2017) Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin. Ann Neurol 81:104���116. https://doi.org/10.1002/ana.24841 [DOI: 10.1002/ana.24841]
  50. El-Shehawy R, Gorokhova E, Fern��ndez-Pi��as F, del Campo FF (2012) Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Res 46:1420���1429. https://doi.org/10.1016/j.watres.2011.11.021 [DOI: 10.1016/j.watres.2011.11.021]
  51. Espa��a Am��rtegui JC, Pekar H, Retrato MDC et al (2023) LC-MS/MS analysis of cyanotoxins in bivalve mollusks-method development, validation and first evidence of occurrence of nodularin in mussels (Mytilus edulis) and oysters (Magallana gigas) from the West Coast of Sweden. Toxins (basel) 15:329. https://doi.org/10.3390/toxins15050329 [DOI: 10.3390/toxins15050329]
  52. Estevez P, Castro D, Peque��o-Valtierra A et al (2019) Emerging marine biotoxins in seafood from European coasts: incidence and analytical challenges. Foods 8:E149. https://doi.org/10.3390/foods8050149 [DOI: 10.3390/foods8050149]
  53. Estevez P, Leao JM, Yasumoto T et al (2020) Caribbean Ciguatoxin-1 stability under strongly acidic conditions: characterisation of a new C-CTX1 methoxy congener. Food Addit Contam A Chem Anal Control Expo Risk Assess 37:519���529. https://doi.org/10.1080/19440049.2019.1705400 [DOI: 10.1080/19440049.2019.1705400]
  54. Figueroa D, R��os J, Araneda OF et al (2023) Oxidative stress parameters and morphological changes in Japanese Medaka (Oryzias latipes) after acute exposure to OA-group toxins. Life 13:15. https://doi.org/10.3390/life13010015 [DOI: 10.3390/life13010015]
  55. Finnis S, Krstic N, McIntyre L et al (2017) Spatiotemporal patterns of paralytic shellfish toxins and their relationships with environmental variables in British Columbia, Canada from 2002 to 2012. Environ Res 156:190���200. https://doi.org/10.1016/j.envres.2017.03.012 [DOI: 10.1016/j.envres.2017.03.012]
  56. Fiorendino JM, Smith JL, Campbell L (2020) Growth response of Dinophysis, Mesodinium, and Teleaulax cultures to temperature, irradiance, and salinity. Harmful Algae 98:101896. https://doi.org/10.1016/j.hal.2020.101896 [DOI: 10.1016/j.hal.2020.101896]
  57. Foden WB, Butchart SHM, Stuart SN et al (2013) Identifying the world���s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8:e65427. https://doi.org/10.1371/journal.pone.0065427 [DOI: 10.1371/journal.pone.0065427]
  58. Frederikse T, Landerer F, Caron L et al (2020) The causes of sea-level rise since 1900. Nature 584:393���397. https://doi.org/10.1038/s41586-020-2591-3 [DOI: 10.1038/s41586-020-2591-3]
  59. Friedman MA, Fernandez M, Backer LC et al (2017) An updated review of ciguatera fish poisoning: clinical, epidemiological, environmental, and public health management. Mar Drugs. https://doi.org/10.3390/md15030072 [DOI: 10.3390/md15030072]
  60. Gaillard S, R��veillon D, Danthu C et al (2021) Effect of a short-term salinity stress on the growth, biovolume, toxins, osmolytes and metabolite profiles on three strains of the Dinophysis acuminata-complex (Dinophysis cf. sacculus). Harmful Algae 107:102009. https://doi.org/10.1016/j.hal.2021.102009 [DOI: 10.1016/j.hal.2021.102009]
  61. Gajdzik L, DeCarlo TM, Koziol A et al (2021) Climate-assisted persistence of tropical fish vagrants in temperate marine ecosystems. Commun Biol 4:1231. https://doi.org/10.1038/s42003-021-02733-7 [DOI: 10.1038/s42003-021-02733-7]
  62. Garc��a-Mendoza E, S��nchez-Bravo YA, Turner A et al (2014) Lipophilic toxins in cultivated mussels (Mytilus galloprovincialis) from Baja California, Mexico. Toxicon 90:111���123. https://doi.org/10.1016/j.toxicon.2014.07.017 [DOI: 10.1016/j.toxicon.2014.07.017]
  63. Gattuso J-P, Magnan A, Bill�� R et al (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:aac4722. https://doi.org/10.1126/science.aac4722 [DOI: 10.1126/science.aac4722]
  64. Gerssen A, Bovee THF, Klijnstra MD et al (2018) First report on the occurrence of tetrodotoxins in bivalve mollusks in The Netherlands. Toxins (basel) 10:450. https://doi.org/10.3390/toxins10110450 [DOI: 10.3390/toxins10110450]
  65. Geselbracht LL, Freeman K, Birch AP et al (2015) Modeled sea level rise impacts on coastal ecosystems at six major estuaries on Florida���s gulf coast: implications for adaptation planning. PLoS ONE 10:e0132079. https://doi.org/10.1371/journal.pone.0132079 [DOI: 10.1371/journal.pone.0132079]
  66. Gibble CM, Peacock MB, Kudela RM (2016) Evidence of freshwater algal toxins in marine shellfish: implications for human and aquatic health. Harmful Algae 59:59���66. https://doi.org/10.1016/j.hal.2016.09.007 [DOI: 10.1016/j.hal.2016.09.007]
  67. Glibert PM, Icarus Allen J, Artioli Y et al (2014) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Change Biol 20:3845���3858. https://doi.org/10.1111/gcb.12662 [DOI: 10.1111/gcb.12662]
  68. Gobler CJ (2020) Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91:101731. https://doi.org/10.1016/j.hal.2019.101731 [DOI: 10.1016/j.hal.2019.101731]
  69. Gobler CJ, Doherty OM, Hattenrath-Lehmann TK et al (2017) Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc Natl Acad Sci U S A 114:4975���4980. https://doi.org/10.1073/pnas.1619575114 [DOI: 10.1073/pnas.1619575114]
  70. Gonz��lez-Cano R, Ruiz-Cantero MC, Santos-Caballero M et al (2021) Tetrodotoxin, a potential drug for neuropathic and cancer pain relief? Toxins (basel) 13:483. https://doi.org/10.3390/toxins13070483 [DOI: 10.3390/toxins13070483]
  71. Hallegraeff GM, Anderson DM, Belin C et al (2021a) Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun Earth Environ 2:117. https://doi.org/10.1038/s43247-021-00178-8 [DOI: 10.1038/s43247-021-00178-8]
  72. Hallegraeff GM, Schweibold L, Jaffrezic E et al (2021b) Overview of Australian and New Zealand harmful algal species occurrences and their societal impacts in the period 1985 to 2018, including a compilation of historic records. Harmful Algae 102:101848. https://doi.org/10.1016/j.hal.2020.101848 [DOI: 10.1016/j.hal.2020.101848]
  73. Harke MJ, Steffen MM, Gobler CJ et al (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4���20. https://doi.org/10.1016/j.hal.2015.12.007 [DOI: 10.1016/j.hal.2015.12.007]
  74. Hashimoto K, Uchida H, Nishimura T et al (2021) Determination of optimal culture conditions for toxin production by a Prorocentrum lima complex strain with high diarrhetic shellfish toxins yield. Harmful Algae 103:102025. https://doi.org/10.1016/j.hal.2021.102025 [DOI: 10.1016/j.hal.2021.102025]
  75. Hassoun AER, Ujevi�� I, Mahfouz C et al (2021) Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea. Sci Total Environ 755:142542. https://doi.org/10.1016/j.scitotenv.2020.142542 [DOI: 10.1016/j.scitotenv.2020.142542]
  76. Hastings RA, Rutterford LA, Freer JJ et al (2020) Climate change drives poleward increases and equatorward declines in marine species. Curr Biol 30:1572-1577.e2. https://doi.org/10.1016/j.cub.2020.02.043 [DOI: 10.1016/j.cub.2020.02.043]
  77. He X, Chen J, Wu D et al (2019) Distribution characteristics and environmental control factors of lipophilic marine algal toxins in Changjiang Estuary and the Adjacent East China Sea. Toxins (basel). https://doi.org/10.3390/toxins11100596 [DOI: 10.3390/toxins11100596]
  78. Hennon GMM, Dyhrman ST (2020) Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. Harmful Algae 91:101587. https://doi.org/10.1016/j.hal.2019.03.005 [DOI: 10.1016/j.hal.2019.03.005]
  79. Hobday AJ, Alexander LV, Perkins SE et al (2016) A hierarchical approach to defining marine heatwaves. Prog Oceanogr 141:227���238. https://doi.org/10.1016/j.pocean.2015.12.014 [DOI: 10.1016/j.pocean.2015.12.014]
  80. Hort V, Arnich N, Gu��rin T et al (2020) First detection of tetrodotoxin in bivalves and gastropods from the French Mainland Coasts. Toxins (basel) 12:599. https://doi.org/10.3390/toxins12090599 [DOI: 10.3390/toxins12090599]
  81. Howard MDA, Smith J, Caron DA et al (2023) Integrative monitoring strategy for marine and freshwater harmful algal blooms and toxins across the freshwater-to-marine continuum. Integr Environ Assess Manag 19:586���604. https://doi.org/10.1002/ieam.4651 [DOI: 10.1002/ieam.4651]
  82. Ibghi M, El Kbiach ML, Rijal Leblad B et al (2022) Occurrence of three dominant epibenthic dinoflagellates (Ostreopsis spp., Coolia monotis and Prorocentrum lima) in relation to biotic substrates and environmental factors in a highly dynamic ecosystem, the Strait of Gibraltar (Southwestern Mediterranean). Environ Monit Assess 194:810. https://doi.org/10.1007/s10661-022-10426-9 [DOI: 10.1007/s10661-022-10426-9]
  83. Ikehara T, Kuniyoshi K, Oshiro N, Yasumoto T (2017) Biooxidation of ciguatoxins leads to species-specific toxin profiles. Toxins (basel) 9:E205. https://doi.org/10.3390/toxins9070205 [DOI: 10.3390/toxins9070205]
  84. Jiang L-Q, Carter BR, Feely RA et al (2019) Surface ocean pH and buffer capacity: past, present and future. Sci Rep 9:18624. https://doi.org/10.1038/s41598-019-55039-4 [DOI: 10.1038/s41598-019-55039-4]
  85. Kalaitzidou MP, Nannou CI, Lambropoulou DA et al (2021) First report of detection of microcystins in farmed mediterranean mussels Mytilus galloprovincialis in Thermaikos gulf in Greece. J Biol Res (thessalon) 28:8. https://doi.org/10.1186/s40709-021-00139-4 [DOI: 10.1186/s40709-021-00139-4]
  86. Katikou P (2019) Public Health risks associated with tetrodotoxin and its analogues in European waters: recent advances after the EFSA scientific opinion. Toxins (basel) 11:E240. https://doi.org/10.3390/toxins11050240 [DOI: 10.3390/toxins11050240]
  87. Kerl CF, Basallote MD, K��berich M et al (2023) Consequences of sea level rise for high metal(loid) loads in the R��a of Huelva estuary sediments. Sci Total Environ 873:162354. https://doi.org/10.1016/j.scitotenv.2023.162354 [DOI: 10.1016/j.scitotenv.2023.162354]
  88. Kim Y-S, An H-J, Kim J, Jeon Y-J (2022) Current situation of palytoxins and cyclic imines in Asia-Pacific countries: causative phytoplankton species and seafood poisoning. Int J Environ Res Public Health 19:4921. https://doi.org/10.3390/ijerph19084921 [DOI: 10.3390/ijerph19084921]
  89. Kim H-J, Jeoung G, Kim KE et al (2023) Co-variance between free-living bacteria and Cochlodinium polykrikoides (Dinophyta) harmful algal blooms, South Korea. Harmful Algae 122:102371. https://doi.org/10.1016/j.hal.2022.102371 [DOI: 10.1016/j.hal.2022.102371]
  90. Klemm K, Cembella A, Clarke D et al (2022) Apparent biogeographical trends in Alexandrium blooms for northern Europe: identifying links to climate change and effective adaptive actions. Harmful Algae 119:102335. https://doi.org/10.1016/j.hal.2022.102335 [DOI: 10.1016/j.hal.2022.102335]
  91. Kodama M, Sato S, Sakamoto S, Ogata T (1996) Occurrence of tetrodotoxin in Alexandrium tamarense, a causative dinoflagellate of paralytic shellfish poisoning. Toxicon 34:1101���1105. https://doi.org/10.1016/0041-0101(96)00117-1 [DOI: 10.1016/0041-0101(96)00117-1]
  92. Kosker AR, ��zogul F, Durmus M et al (2018) First report on TTX levels of the yellow spotted pufferfish (Torquigener flavimaculosus) in the Mediterranean Sea. Toxicon 148:101���106. https://doi.org/10.1016/j.toxicon.2018.04.018 [DOI: 10.1016/j.toxicon.2018.04.018]
  93. Kremp A, Godhe A, Egardt J et al (2012) Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol 2:1195���1207. https://doi.org/10.1002/ece3.245 [DOI: 10.1002/ece3.245]
  94. Kirikkaleli D, Sowah JK (2021) Time-frequency dependency of temperature and sea level: a global perspective. Environ Sci Pollut Res 28:58787���58798. https://doi.org/10.1007/s11356-021-14846-x
  95. Kudo T, Kawauchi A, Nakahara T et al (2014) Draft genome sequences of Vibrio sp. strains isolated from tetrodotoxin-bearing scavenging gastropod. Genome Announc 2:e00623-e714. https://doi.org/10.1128/genomeA.00623-14 [DOI: 10.1128/genomeA.00623-14]
  96. Kumar G, Au NPB, Lei ENY et al (2017) Acute exposure to pacific ciguatoxin reduces electroencephalogram activity and disrupts neurotransmitter metabolic pathways in motor cortex. Mol Neurobiol 54:5590���5603. https://doi.org/10.1007/s12035-016-0093-y [DOI: 10.1007/s12035-016-0093-y]
  97. Layton KKS, Bradbury IR (2022) Harnessing the power of multi-omics data for predicting climate change response. J Anim Ecol 91:1064���1072. https://doi.org/10.1111/1365-2656.13619 [DOI: 10.1111/1365-2656.13619]
  98. Leard E, Carmichael RH, Ortmann AC, Jones JL (2023) Environmental drivers of Vibrio cholerae abundances in mobile bay, Alabama. Microbiol Spectr 11:e0173322. https://doi.org/10.1128/spectrum.01733-22 [DOI: 10.1128/spectrum.01733-22]
  99. Lee KJ, Mok JS, Song KC et al (2012) First detection and seasonal variation of lipophilic toxins okadaic acid, dinophysistoxin-1, and yessotoxin in Korean gastropods. J Food Prot 75:2000���2006. https://doi.org/10.4315/0362-028X.JFP-12-192 [DOI: 10.4315/0362-028X.JFP-12-192]
  100. Lennox RJ, Bravener GA, Lin H-Y et al (2020) Potential changes to the biology and challenges to the management of invasive sea lamprey Petromyzon marinus in the Laurentian Great Lakes due to climate change. Glob Chang Biol 26:1118���1137. https://doi.org/10.1111/gcb.14957 [DOI: 10.1111/gcb.14957]
  101. Le��n-Mu��oz J, Urbina MA, Garreaud R, Iriarte JL (2018) Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci Rep 8:1330. https://doi.org/10.1038/s41598-018-19461-4 [DOI: 10.1038/s41598-018-19461-4]
  102. Levy BS, Patz JA (2015) Climate change, human rights, and social justice. Ann Glob Health 81:310���322. https://doi.org/10.1016/j.aogh.2015.08.008 [DOI: 10.1016/j.aogh.2015.08.008]
  103. Li Y, Chen J, Zhao Q et al (2011) A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the three gorges reservoir region, China. Environ Health Perspect 119:1483���1488. https://doi.org/10.1289/ehp.1002412 [DOI: 10.1289/ehp.1002412]
  104. Li M, Ni W, Zhang F et al (2020a) Climate-induced interannual variability and projected change of two harmful algal bloom taxa in Chesapeake Bay, USA. Sci Total Environ 744:140947. https://doi.org/10.1016/j.scitotenv.2020.140947 [DOI: 10.1016/j.scitotenv.2020.140947]
  105. Li X, Yan M, Gu J et al (2020b) The effect of temperature on physiology, toxicity and toxin content of the benthic dinoflagellate Coolia malayensis from a seasonal tropical region. Water Res 185:116264. https://doi.org/10.1016/j.watres.2020.116264 [DOI: 10.1016/j.watres.2020.116264]
  106. Li F, Yue C, Deng Y, Tang YZ (2022) Characterizing the status of energetic metabolism of dinoflagellate resting cysts under mock conditions of marine sediments via physiological and transcriptional measurements. Int J Mol Sci 23:15033. https://doi.org/10.3390/ijms232315033 [DOI: 10.3390/ijms232315033]
  107. Lian Z, Li F, He X et al (2022) Rising CO2 will increase toxicity of marine dinoflagellate Alexandrium minutum. J Hazard Mater 431:128627. https://doi.org/10.1016/j.jhazmat.2022.128627 [DOI: 10.1016/j.jhazmat.2022.128627]
  108. Liu J, Sun Y (2015) The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. Toxicol Lett 236:1���7. https://doi.org/10.1016/j.toxlet.2015.04.010 [DOI: 10.1016/j.toxlet.2015.04.010]
  109. Loeffler CR, Tartaglione L, Friedemann M et al (2021) Ciguatera mini review: 21st century environmental challenges and the interdisciplinary research efforts rising to meet them. Int J Environ Res Public Health 18:3027. https://doi.org/10.3390/ijerph18063027 [DOI: 10.3390/ijerph18063027]
  110. L��pez-Rivera A, O���Callaghan K, Moriarty M et al (2010) First evidence of azaspiracids (AZAs): a family of lipophilic polyether marine toxins in scallops (Argopecten purpuratus) and mussels (Mytilus chilensis) collected in two regions of Chile. Toxicon 55:692���701. https://doi.org/10.1016/j.toxicon.2009.10.020 [DOI: 10.1016/j.toxicon.2009.10.020]
  111. L��ptien U, Dietze H (2022) Retracing cyanobacteria blooms in the Baltic Sea. Sci Rep 12:10873. https://doi.org/10.1038/s41598-022-14880-w [DOI: 10.1038/s41598-022-14880-w]
  112. Ma J, Song J, Li X et al (2021) Seawater stratification vs. plankton for oligotrophic mechanism: a case study of M4 seamount area in the Western Pacific Ocean. Mar Environ Res 169:105400. https://doi.org/10.1016/j.marenvres.2021.105400 [DOI: 10.1016/j.marenvres.2021.105400]
  113. Magarlamov TY, Melnikova DI, Chernyshev AV (2017) Tetrodotoxin-producing bacteria: detection, distribution and migration of the toxin in aquatic systems. Toxins (basel) 9:166. https://doi.org/10.3390/toxins9050166 [DOI: 10.3390/toxins9050166]
  114. Manta G, de Mello S, Trinchin R et al (2018) The 2017 Record Marine Heatwave in the Southwestern Atlantic Shelf. Geophys Res Lett 45:12449���12456. https://doi.org/10.1029/2018GL081070 [DOI: 10.1029/2018GL081070]
  115. Massey IY, Yang F, Ding Z et al (2018) Exposure routes and health effects of microcystins on animals and humans: a mini-review. Toxicon 151:156���162. https://doi.org/10.1016/j.toxicon.2018.07.010 [DOI: 10.1016/j.toxicon.2018.07.010]
  116. Mattei C, Vetter I, Eisenbl��tter A et al (2014) Ciguatera fish poisoning: a first epidemic in Germany highlights an increasing risk for European countries. Toxicon 91:76���83. https://doi.org/10.1016/j.toxicon.2014.10.016 [DOI: 10.1016/j.toxicon.2014.10.016]
  117. McCarthy M, Bane V, Garc��a-Altares M et al (2015) Assessment of emerging biotoxins (pinnatoxin G and spirolides) at Europe���s first marine reserve: Lough Hyne. Toxicon 108:202���209. https://doi.org/10.1016/j.toxicon.2015.10.007 [DOI: 10.1016/j.toxicon.2015.10.007]
  118. McCaw BA, Stevenson TJ, Lancaster LT (2020) Epigenetic responses to temperature and climate. Integr Comp Biol 60:1469���1480. https://doi.org/10.1093/icb/icaa049 [DOI: 10.1093/icb/icaa049]
  119. McIntyre KM, Setzkorn C, Baylis M et al (2010) Impact of climate change on human and animal health. Vet Rec 167:586. https://doi.org/10.1136/vr.c5523 [DOI: 10.1136/vr.c5523]
  120. Miller MA, Kudela RM, Mekebri A et al (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (Microcystin) transfer from land to sea otters. PLoS ONE 5:e12576. https://doi.org/10.1371/journal.pone.0012576 [DOI: 10.1371/journal.pone.0012576]
  121. Mohamed ZA (2018) Potentially harmful microalgae and algal blooms in the Red Sea: current knowledge and research needs. Mar Environ Res 140:234���242. https://doi.org/10.1016/j.marenvres.2018.06.019 [DOI: 10.1016/j.marenvres.2018.06.019]
  122. Monaco CJ, Nagelkerken I, Booth DJ et al (2021) Opposing life stage-specific effects of ocean warming at source and sink populations of range-shifting coral-reef fishes. J Anim Ecol 90:615���627. https://doi.org/10.1111/1365-2656.13394 [DOI: 10.1111/1365-2656.13394]
  123. Moore SK, Mantua NJ, Salath�� EP (2011) Past trends and future scenarios for environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound shellfish. Harmful Algae 10:521���529. https://doi.org/10.1016/j.hal.2011.04.004 [DOI: 10.1016/j.hal.2011.04.004]
  124. Moore SK, Johnstone JA, Banas NS, Salath�� EP (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1���11. https://doi.org/10.1016/j.hal.2015.06.008 [DOI: 10.1016/j.hal.2015.06.008]
  125. Naknaen A, Ratsameepakai W, Suttinun O et al (2021) Microcystis Sp. Co-producing microcystin and saxitoxin from Songkhla Lake Basin, Thailand. Toxins (basel) 13:631. https://doi.org/10.3390/toxins13090631 [DOI: 10.3390/toxins13090631]
  126. Nieva JA, Krock B, Tillmann U et al (2020) Gymnodimine A and 13-desMethyl spirolide C alter intracellular calcium levels via acetylcholine receptors. Toxins (basel) 12:751. https://doi.org/10.3390/toxins12120751 [DOI: 10.3390/toxins12120751]
  127. Nishijima W, Nakano Y, Nakai S et al (2013) Impact of flood events on macrobenthic community structure on an intertidal flat developing in the Ohta River Estuary. Mar Pollut Bull 74:364���373. https://doi.org/10.1016/j.marpolbul.2013.06.028 [DOI: 10.1016/j.marpolbul.2013.06.028]
  128. N����ez-V��zquez EJ, Poot-Delgado CA, Turner AD et al (2022) Paralytic shellfish toxins of Pyrodinium bahamense (Dinophyceae) in the Southeastern Gulf of Mexico. Toxins (basel) 14:760. https://doi.org/10.3390/toxins14110760 [DOI: 10.3390/toxins14110760]
  129. O���Dea RE, Noble DWA, Johnson SL et al (2016) The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ Epigenet 2:dvv014. https://doi.org/10.1093/eep/dvv014 [DOI: 10.1093/eep/dvv014]
  130. O���Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313���334. https://doi.org/10.1016/j.hal.2011.10.027 [DOI: 10.1016/j.hal.2011.10.027]
  131. Ollison GA, Hu SK, Hopper JV et al (2022) Daily dynamics of contrasting spring algal blooms in Santa Monica Bay (central Southern California Bight). Environ Microbiol 24:6033���6051. https://doi.org/10.1111/1462-2920.16137 [DOI: 10.1111/1462-2920.16137]
  132. Olmedo E, Turiel A, Gonz��lez-Gambau V et al (2022) Increasing stratification as observed by satellite sea surface salinity measurements. Sci Rep 12:6279. https://doi.org/10.1038/s41598-022-10265-1 [DOI: 10.1038/s41598-022-10265-1]
  133. Osland MJ, Stevens PW, Lamont MM et al (2021) Tropicalization of temperate ecosystems in North America: the northward range expansion of tropical organisms in response to warming winter temperatures. Glob Chang Biol 27:3009���3034. https://doi.org/10.1111/gcb.15563 [DOI: 10.1111/gcb.15563]
  134. Otero P, Silva M (2022) Emerging marine biotoxins in European waters: potential risks and analytical challenges. Mar Drugs 20:199. https://doi.org/10.3390/md20030199 [DOI: 10.3390/md20030199]
  135. Otero A, Chapela M-J, Atanassova M et al (2011) Cyclic imines: chemistry and mechanism of action: a review. Chem Res Toxicol 24:1817���1829. https://doi.org/10.1021/tx200182m [DOI: 10.1021/tx200182m]
  136. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995���1010. https://doi.org/10.1007/s00248-012-0159-y [DOI: 10.1007/s00248-012-0159-y]
  137. Pelejero C, Calvo E, Hoegh-Guldberg O (2010) Paleo-perspectives on ocean acidification. Trends Ecol Evol 25:332���344. https://doi.org/10.1016/j.tree.2010.02.002 [DOI: 10.1016/j.tree.2010.02.002]
  138. Preece EP, Moore BC, Hardy FJ (2015) Transfer of microcystin from freshwater lakes to Puget Sound, WA and toxin accumulation in marine mussels (Mytilus trossulus). Ecotoxicol Environ Saf 122:98���105. https://doi.org/10.1016/j.ecoenv.2015.07.013 [DOI: 10.1016/j.ecoenv.2015.07.013]
  139. Priya AK, Muruganandam M, Rajamanickam S et al (2023) Impact of climate change and anthropogenic activities on aquatic ecosystem���a review. Environ Res 238:117233. https://doi.org/10.1016/j.envres.2023.117233 [DOI: 10.1016/j.envres.2023.117233]
  140. Qin J, Hu Z, Zhang Q et al (2020) Toxic effects and mechanisms of Prymnesium parvum (Haptophyta) isolated from the Pearl River Estuary, China. Harmful Algae 96:101844. https://doi.org/10.1016/j.hal.2020.101844 [DOI: 10.1016/j.hal.2020.101844]
  141. Qiu Y, Liu H, Liu J et al (2023) A digital twin lake framework for monitoring and management of harmful algal blooms. Toxins (basel) 15:665. https://doi.org/10.3390/toxins15110665 [DOI: 10.3390/toxins15110665]
  142. Rambla-Alegre M, Miles CO, de la Iglesia P et al (2018) Occurrence of cyclic imines in European commercial seafood and consumers risk assessment. Environ Res 161:392���398. https://doi.org/10.1016/j.envres.2017.11.028 [DOI: 10.1016/j.envres.2017.11.028]
  143. R��os AF, Resplandy L, Garc��a-Ib����ez MI et al (2015) Decadal acidification in the water masses of the Atlantic Ocean. Proc Natl Acad Sci U S A 112:9950���9955. https://doi.org/10.1073/pnas.1504613112 [DOI: 10.1073/pnas.1504613112]
  144. Romera-Castillo C, Lucas A, Mallenco-Fornies R et al (2023) Abiotic plastic leaching contributes to ocean acidification. Sci Total Environ 854:158683. https://doi.org/10.1016/j.scitotenv.2022.158683 [DOI: 10.1016/j.scitotenv.2022.158683]
  145. R��thig T, Trevathan-Tackett SM, Voolstra CR et al (2023) Human-induced salinity changes impact marine organisms and ecosystems. Glob Change Biol 29:4731���4749. https://doi.org/10.1111/gcb.16859 [DOI: 10.1111/gcb.16859]
  146. Salgado P, V��zquez JA, Riob�� P et al (2015) A kinetic and factorial approach to study the effects of temperature and salinity on growth and toxin production by the dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. PLoS ONE 10:e0143021. https://doi.org/10.1371/journal.pone.0143021 [DOI: 10.1371/journal.pone.0143021]
  147. Sall��e J-B, Pellichero V, Akhoudas C et al (2021) Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591:592���598. https://doi.org/10.1038/s41586-021-03303-x [DOI: 10.1038/s41586-021-03303-x]
  148. Santos M, Costa PR, Porteiro FM, Moita MT (2014) First report of a massive bloom of Alexandrium minutum (Dinophyceae) in middle North Atlantic: a coastal lagoon in S. Jorge Island, Azores. Toxicon 90:265���268. https://doi.org/10.1016/j.toxicon.2014.08.065 [DOI: 10.1016/j.toxicon.2014.08.065]
  149. Servent D, Malgorn C, Bernes M et al (2021) First evidence that emerging pinnatoxin-G, a contaminant of shellfish, reaches the brain and crosses the placental barrier. Sci Total Environ 790:148125. https://doi.org/10.1016/j.scitotenv.2021.148125 [DOI: 10.1016/j.scitotenv.2021.148125]
  150. Seto DS, Karp-Boss L, Wells ML (2019) Effects of increasing temperature and acidification on the growth and competitive success of Alexandrium catenella from the Gulf of Maine. Harmful Algae 89:101670. https://doi.org/10.1016/j.hal.2019.101670 [DOI: 10.1016/j.hal.2019.101670]
  151. Silva M, Azevedo J, Rodriguez P et al (2012) New gastropod vectors and tetrodotoxin potential expansion in temperate waters of the Atlantic Ocean. Mar Drugs 10:712���726. https://doi.org/10.3390/md10040712 [DOI: 10.3390/md10040712]
  152. Silva M, Rodriguez I, Barreiro A et al (2015) First report of ciguatoxins in two starfish species: Ophidiaster ophidianus and Marthasterias glacialis. Toxins (basel) 7:3740���3757. https://doi.org/10.3390/toxins7093740 [DOI: 10.3390/toxins7093740]
  153. Simonetti S, Zupo V, Gambi MC et al (2022) Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: new frontiers in the study of adaptation to ocean acidification. Mar Pollut Bull 185:114365. https://doi.org/10.1016/j.marpolbul.2022.114365 [DOI: 10.1016/j.marpolbul.2022.114365]
  154. Sosa S, Pelin M, Cavion F et al (2020) Acute oral toxicity of pinnatoxin G in mice. Toxins (basel) 12:E87. https://doi.org/10.3390/toxins12020087 [DOI: 10.3390/toxins12020087]
  155. Sousa MC, Ribeiro A, Des M et al (2020) NW Iberian Peninsula coastal upwelling future weakening: competition between wind intensification and surface heating. Sci Total Environ 703:134808. https://doi.org/10.1016/j.scitotenv.2019.134808 [DOI: 10.1016/j.scitotenv.2019.134808]
  156. Stivala CE, Benoit E, Ar��oz R et al (2015) Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Nat Prod Rep 32:411���435. https://doi.org/10.1039/c4np00089g [DOI: 10.1039/c4np00089g]
  157. Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ (2018) Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560:92���96. https://doi.org/10.1038/s41586-018-0359-9 [DOI: 10.1038/s41586-018-0359-9]
  158. Sugita H, Iwata J, Miyajima C et al (1989) Changes in microflora of a puffer fish Fugu niphobles, with different water temperatures. Mar Biol 101:299���304. https://doi.org/10.1007/BF00428125 [DOI: 10.1007/BF00428125]
  159. Sullivan TJ, Neigel JE (2018) Effects of temperature and salinity on prevalence and intensity of infection of blue crabs, Callinectes sapidus, by Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in Louisiana. J Invertebr Pathol 151:82���90. https://doi.org/10.1016/j.jip.2017.11.004 [DOI: 10.1016/j.jip.2017.11.004]
  160. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686���690. https://doi.org/10.1038/nclimate1539 [DOI: 10.1038/nclimate1539]
  161. Tamele IJ, Timba I, Costa PR, Vasconcelos V (2022) Tetrodotoxin and analogues in two local pufferfish species from Inhaca Island���South of Mozambique: first report in the Mozambican coast. Toxicon 216:88���91. https://doi.org/10.1016/j.toxicon.2022.06.011 [DOI: 10.1016/j.toxicon.2022.06.011]
  162. Tenorio C, ��lvarez G, Quijano-Scheggia S et al (2021) First report of domoic acid production from Pseudo-nitzschia multistriata in Paracas Bay (Peru). Toxins (basel) 13:408. https://doi.org/10.3390/toxins13060408 [DOI: 10.3390/toxins13060408]
  163. Tester PA, Litaker RW, Berdalet E (2020) Climate change and harmful benthic microalgae. Harmful Algae 91:101655. https://doi.org/10.1016/j.hal.2019.101655 [DOI: 10.1016/j.hal.2019.101655]
  164. Tillmann U, Ja��n D, Fern��ndez L et al (2017) Amphidoma languida (Amphidomatacea, Dinophyceae) with a novel azaspiracid toxin profile identified as the cause of molluscan contamination at the Atlantic coast of southern Spain. Harmful Algae 62:113���126. https://doi.org/10.1016/j.hal.2016.12.001 [DOI: 10.1016/j.hal.2016.12.001]
  165. Tollefson J (2021) IPCC climate report: Earth is warmer than it���s been in 125,000 years. Nature 596:171���172. https://doi.org/10.1038/d41586-021-02179-1 [DOI: 10.1038/d41586-021-02179-1]
  166. Turner EL, Paudel B, Montagna PA (2015) Baseline nutrient dynamics in shallow well mixed coastal lagoon with seasonal harmful algal blooms and hypoxia formation. Mar Pollut Bull 96:456���462. https://doi.org/10.1016/j.marpolbul.2015.05.005 [DOI: 10.1016/j.marpolbul.2015.05.005]
  167. Turner AD, Fenwick D, Powell A et al (2018) New invasive nemertean species (Cephalothrix simula) in England with high levels of tetrodotoxin and a microbiome linked to toxin metabolism. Mar Drugs. https://doi.org/10.3390/md16110452 [DOI: 10.3390/md16110452]
  168. Vacarizas J, Benico G, Austero N, Azanza R (2018) Taxonomy and toxin production of Gambierdiscus carpenteri (Dinophyceae) in a tropical marine ecosystem: the first record from the Philippines. Mar Pollut Bull 137:430���443. https://doi.org/10.1016/j.marpolbul.2018.10.034 [DOI: 10.1016/j.marpolbul.2018.10.034]
  169. Van Hemert C, Harley JR, Baluss G et al (2022) Paralytic shellfish toxins associated with arctic tern mortalities in Alaska. Harmful Algae 117:102270. https://doi.org/10.1016/j.hal.2022.102270 [DOI: 10.1016/j.hal.2022.102270]
  170. Verma A, Barua A, Ruvindy R et al (2019) The genetic basis of toxin biosynthesis in dinoflagellates. Microorganisms 7:222. https://doi.org/10.3390/microorganisms7080222 [DOI: 10.3390/microorganisms7080222]
  171. Vlamis A, Katikou P, Rodriguez I et al (2015) First detection of tetrodotoxin in Greek Shellfish by UPLC-MS/MS potentially linked to the presence of the dinoflagellate Prorocentrum minimum. Toxins (basel) 7:1779���1807. https://doi.org/10.3390/toxins7051779 [DOI: 10.3390/toxins7051779]
  172. Wang X-Z, Cheng Y, Li N et al (2016) Occurrence and seasonal variations of lipophilic marine toxins in commercial clam species along the coast of Jiangsu, China. Toxins. https://doi.org/10.3390/toxins8010008 [DOI: 10.3390/toxins8010008]
  173. Wang F, Guo S, Liang J, Sun X (2023) Water column stratification governs picophytoplankton community structure in the oligotrophic eastern Indian ocean. Mar Environ Res 189:106074. https://doi.org/10.1016/j.marenvres.2023.106074 [DOI: 10.1016/j.marenvres.2023.106074]
  174. Welker M, von D��hren H (2006) Cyanobacterial peptides - nature���s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530���563. https://doi.org/10.1111/j.1574-6976.2006.00022.x [DOI: 10.1111/j.1574-6976.2006.00022.x]
  175. Wells ML, Karlson B, Wulff A et al (2020) Future HAB science: directions and challenges in a changing climate. Harmful Algae 91:101632. https://doi.org/10.1016/j.hal.2019.101632 [DOI: 10.1016/j.hal.2019.101632]
  176. Wells M, Burford M, Kremp A et al (2021) Guidelines for the study of climate change effects on HABs. UNESCO-IOC/SCOR
  177. Whitelaw BL, Cooke IR, Finn J et al (2019) The evolution and origin of tetrodotoxin acquisition in the blue-ringed octopus (genus Hapalochlaena). Aquat Toxicol 206:114���122. https://doi.org/10.1016/j.aquatox.2018.10.012 [DOI: 10.1016/j.aquatox.2018.10.012]
  178. Wingert CJ, Cochlan WP (2021) Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae 107:102030. https://doi.org/10.1016/j.hal.2021.102030 [DOI: 10.1016/j.hal.2021.102030]
  179. Wohlrab S, John U, Klemm K et al (2020) Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae 92:101697. https://doi.org/10.1016/j.hal.2019.101697 [DOI: 10.1016/j.hal.2019.101697]
  180. Wu S, Mi T, Zhen Y et al (2021) A rise in ROS and EPS production: new insights into the Trichodesmium erythraeum response to ocean acidification. J Phycol 57:172���182. https://doi.org/10.1111/jpy.13075 [DOI: 10.1111/jpy.13075]
  181. Xiao W, Liu X, Irwin AJ et al (2018) Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Res 128:206���216. https://doi.org/10.1016/j.watres.2017.10.051 [DOI: 10.1016/j.watres.2017.10.051]
  182. Xiao Y, Du M, Deng Y et al (2024) Modulation of growth, microcystin production, and algal-bacterial interactions of the bloom-forming algae Microcystis aeruginosa by a novel bacterium recovered from its phycosphere. Front Microbiol 15:1295696. https://doi.org/10.3389/fmicb.2024.1295696 [DOI: 10.3389/fmicb.2024.1295696]
  183. Xu Y, Richlen ML, Liefer JD et al (2016) Influence of environmental variables on Gambierdiscus spp. (Dinophyceae) growth and distribution. PLoS ONE 11:e0153197. https://doi.org/10.1371/journal.pone.0153197 [DOI: 10.1371/journal.pone.0153197]
  184. Xu Y, He X, Lee WH et al (2021) Ciguatoxin-producing dinoflagellate Gambierdiscus in the Beibu Gulf: first report of toxic Gambierdiscus in Chinese Waters. Toxins (basel) 13:643. https://doi.org/10.3390/toxins13090643 [DOI: 10.3390/toxins13090643]
  185. Xu D, Zheng G, Brennan G et al (2023) Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. ISME J. https://doi.org/10.1038/s41396-023-01370-8 [DOI: 10.1038/s41396-023-01370-8]
  186. Yan M, Mak MYL, Cheng J et al (2020) Effects of dietary exposure to ciguatoxin P-CTX-1 on the reproductive performance in marine medaka (Oryzias melastigma). Mar Pollut Bull 152:110837. https://doi.org/10.1016/j.marpolbul.2019.110837 [DOI: 10.1016/j.marpolbul.2019.110837]
  187. Yang Y-M, Park J-H, An S-I et al (2022) Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming. Nat Commun 13:3978. https://doi.org/10.1038/s41467-022-31676-8 [DOI: 10.1038/s41467-022-31676-8]
  188. Y��iguez AT, Ottong ZJ (2020) Predicting fish kills and toxic blooms in an intensive mariculture site in the Philippines using a machine learning model. Sci Total Environ 707:136173. https://doi.org/10.1016/j.scitotenv.2019.136173 [DOI: 10.1016/j.scitotenv.2019.136173]
  189. Yokozeki T, Kawabata M, Fujita K et al (2024) Sensitive detection of Ciguatoxins using a neuroblastoma cell-based assay with voltage-gated potassium channel inhibitors. Toxins (basel) 16:118. https://doi.org/10.3390/toxins16030118 [DOI: 10.3390/toxins16030118]
  190. Yuan L, Liu H, Liu X et al (2020) Epigenetic modification of H3K4 and oxidative stress are involved in MC-LR-induced apoptosis in testicular cells of SD rats. Environ Toxicol 35:277���291. https://doi.org/10.1002/tox.22865 [DOI: 10.1002/tox.22865]
  191. Zhang X, Cao B, Wang J et al (2013) Neurotoxicity and reactive astrogliosis in the anterior cingulate cortex in acute ciguatera poisoning. Neuromol Med 15:310���323. https://doi.org/10.1007/s12017-013-8220-7 [DOI: 10.1007/s12017-013-8220-7]
  192. Zhang S, Du X, Liu H et al (2021) The latest advances in the reproductive toxicity of microcystin-LR. Environ Res. https://doi.org/10.1016/j.envres.2020.110254 [DOI: 10.1016/j.envres.2020.110254]
  193. Zhang J, Yang Q, Liu Q et al (2022) The responses of harmful dinoflagellate Karenia mikimotoi to simulated ocean acidification at the transcriptional level. Harmful Algae 111:102167. https://doi.org/10.1016/j.hal.2021.102167 [DOI: 10.1016/j.hal.2021.102167]
  194. Zhu W, Feng G, Chen H et al (2018) Modelling the vertical migration of different-sized Microcystis colonies: coupling turbulent mixing and buoyancy regulation. Environ Sci Pollut Res 25:30339���30347. https://doi.org/10.1007/s11356-018-3041-8 [DOI: 10.1007/s11356-018-3041-8]

Grants

  1. 82273594/National Natural Science Foundation of China
  2. 82073512/National Natural Science Foundation of China

MeSH Term

Climate Change
Seawater
Marine Toxins
Humans
Animals
Aquatic Organisms
Risk Assessment
Environmental Monitoring

Chemicals

Marine Toxins

Word Cloud

Created with Highcharts 10.0.0marinetoxinsclimatechangehealthmayseawaterconditionsorganismspublicriskcanalgaebacteriaproductiontoxicityemergingrisksMarineproducedthreatenhumanimposeheavyburdencoastalcountriesLatelyemergenceregionspreviouslyunaffectedbelievedsignificantfactorpapersystematicallysummarizesimpacttermschangesfindingscauseoceanwarmingacidificationstratificationsea-levelriseclimaticeventsaltersurfacetemperaturesalinitypHnutrientpromotegrowthvariousfacilitatinghandexpandlivingrangesfishtherebyexacerbatingspreadadditionsourcesdistributionciguatoxintetrodotoxincycliciminesmicrocystindescribedimproveawarenessLookingaheaddevelopinginterdisciplinarycooperationstrengtheningmonitoringexploringnovelapproachesessentialbetteraddressposedAltogetherinterrelationshipsecologyanalyzedstudyprovidingtheoreticalbasispreventingmanagingfutureincreasetoxins?InsightschangingClimateEmergingHABsMechanism

Similar Articles

Cited By (1)