Exploring the potential relationship between short sleep risks and cognitive function from the perspective of inflammatory biomarkers and cellular pathways: Insights from population-based and mice studies.

Yanwei You, Jinwei Li, Yang Zhang, Xingtian Li, Xinming Li, Xindong Ma
Author Information
  1. Yanwei You: Division of Sports Science & Physical Education, Tsinghua University, Beijing, China. ORCID
  2. Jinwei Li: Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
  3. Yang Zhang: Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China.
  4. Xingtian Li: Division of Sports Science & Physical Education, Tsinghua University, Beijing, China.
  5. Xinming Li: Division of Sports Science & Physical Education, Tsinghua University, Beijing, China.
  6. Xindong Ma: Division of Sports Science & Physical Education, Tsinghua University, Beijing, China.

Abstract

AIMS: The molecular mechanism of short-sleep conditions on cognition remains largely unknown. This research aimed to investigate associations between short sleep, inflammatory biomarkers and cognitive function in the US population (NHANES data 2011-2014) and explore cellular mechanisms in mice.
METHODS: Systemic immune-inflammation index (SII) was calculated using blood-cell based biomarkers. Further, we employed integrated bioinformatics and single-cell transcriptomics (GSE137665) to examine how short sleep exposure influenced the molecular pathways associated with inflammation in the brain. To explore the signaling pathways and biological processes of sleep deprivation, we carried out enrichment analyses utilizing the GO and KEGG databases.
RESULTS: Population results showed that, compared with normal sleep group, severe short sleep was associated with lower cognitive ability in all the four tests. Moreover, a higher SII level was correlated with lower scores of cognitive tests. In mice study, elevated activation of the inflammatory pathway was observed in cell subgroups of neurons within the sleep deprivation and recovery sleep cohorts. Additionally, heightened expression of oxidative stress and integrated stress response pathways was noted in GABAergic neurons during sleep deprivation.
CONCLUSION: This study contributed to the understanding of the influence of short sleep on cognitive function and its cellular mechanisms.

Keywords

References

  1. Commun Biol. 2021 Nov 18;4(1):1304 [PMID: 34795404]
  2. Curr Opin Neurobiol. 2017 Jun;44:186-192 [PMID: 28577468]
  3. J Sleep Res. 2022 Dec;31(6):e13679 [PMID: 35785454]
  4. Front Aging Neurosci. 2023 Jun 22;15:1214748 [PMID: 37424629]
  5. J Clin Psychopharmacol. 2018 Oct;38(5):513-519 [PMID: 30124583]
  6. Neurology. 1997 Apr;48(4):1115-7 [PMID: 9109914]
  7. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4483-4488 [PMID: 29632177]
  8. Neurobiol Sleep Circadian Rhythms. 2021 Dec 28;12:100073 [PMID: 35028489]
  9. CNS Neurosci Ther. 2024 May;30(5):e14783 [PMID: 38797980]
  10. J Clin Invest. 2007 Feb;117(2):448-56 [PMID: 17273557]
  11. Front Psychiatry. 2024 Apr 30;15:1340843 [PMID: 38745782]
  12. BMC Psychiatry. 2023 Sep 15;23(1):671 [PMID: 37715146]
  13. Sleep Med Rev. 2017 Feb;31:91-101 [PMID: 26944909]
  14. Neurology. 1989 Sep;39(9):1159-65 [PMID: 2771064]
  15. Free Radic Biol Med. 2018 May 20;120:395-406 [PMID: 29655867]
  16. Curr Top Behav Neurosci. 2015;25:65-90 [PMID: 25646722]
  17. Sleep Sci. 2018 Jul-Aug;11(4):245-253 [PMID: 30746042]
  18. Medicina (Kaunas). 2022 Sep 16;58(9): [PMID: 36143969]
  19. Clin Interv Aging. 2021 Jan 11;16:97-105 [PMID: 33469277]
  20. Curr Opin Neurobiol. 2023 Aug;81:102733 [PMID: 37390796]
  21. Neurosci Lett. 2022 Apr 17;776:136575 [PMID: 35276231]
  22. Br J Cancer. 2018 Mar 20;118(6):761-762 [PMID: 29485981]
  23. Am J Epidemiol. 2013 Apr 15;177(8):826-33 [PMID: 23524039]
  24. Biomed Res Int. 2020 Nov 23;2020:5764017 [PMID: 33381558]
  25. Front Public Health. 2024 Jan 16;12:1197150 [PMID: 38292911]
  26. Stroke. 2014 Jun;45(6):1620-5 [PMID: 24743442]
  27. J Neuroinflammation. 2017 Nov 15;14(1):222 [PMID: 29141671]
  28. Front Immunol. 2023 Jan 13;13:1080782 [PMID: 36713451]
  29. Sleep. 2020 Feb 13;43(2): [PMID: 31553459]
  30. Exp Brain Res. 2022 Dec;240(12):3259-3270 [PMID: 36301335]
  31. Sci Rep. 2024 Mar 15;14(1):6247 [PMID: 38486063]
  32. PLoS Biol. 2018 Jul 12;16(7):e2005206 [PMID: 30001323]
  33. BMC Public Health. 2023 Mar 14;23(1):489 [PMID: 36918831]
  34. Nutrients. 2024 Mar 08;16(6): [PMID: 38542688]
  35. Mol Cell. 2003 Mar;11(3):619-33 [PMID: 12667446]
  36. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  37. J Affect Disord. 2022 Jan 1;296:183-188 [PMID: 34607059]
  38. Clin Cancer Res. 2014 Dec 1;20(23):6212-22 [PMID: 25271081]
  39. Brain Sci. 2023 Jan 19;13(2): [PMID: 36831714]
  40. Nucleic Acids Res. 2019 Jan 8;47(D1):D721-D728 [PMID: 30289549]
  41. Cell Mol Neurobiol. 2023 Mar;43(2):711-727 [PMID: 35568778]
  42. Commun Biol. 2022 Aug 19;5(1):846 [PMID: 35986171]
  43. Ann Neurol. 2020 May;87(5):700-709 [PMID: 32057125]
  44. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  45. Med Educ. 2021 Feb;55(2):174-184 [PMID: 32697336]
  46. Brain Res Rev. 2009 Oct;61(2):281-306 [PMID: 19695288]
  47. EXCLI J. 2015 May 18;14:672-83 [PMID: 26648820]
  48. Front Biosci. 2003 May 01;8:s421-37 [PMID: 12700105]
  49. Adv Protein Chem Struct Biol. 2020;119:309-336 [PMID: 31997771]
  50. Appl Physiol Nutr Metab. 2024 Apr 3;: [PMID: 38569203]
  51. Sleep Med. 2013 Apr;14(4):324-32 [PMID: 23394772]
  52. J Sports Sci. 2024 Mar;42(6):527-536 [PMID: 38695324]
  53. Neuropsychopharmacology. 2020 Jan;45(1):104-120 [PMID: 31408876]
  54. Science. 2019 Jul 5;365(6448): [PMID: 31273097]
  55. Eur Heart J. 2011 Jun;32(12):1484-92 [PMID: 21300732]
  56. J Sleep Res. 2009 Jun;18(2):148-58 [PMID: 19645960]
  57. Sleep Health. 2015 Mar;1(1):40-43 [PMID: 29073412]
  58. PeerJ. 2024 Feb 28;12:e17057 [PMID: 38436025]
  59. Front Neural Circuits. 2019 Dec 05;13:78 [PMID: 31866835]
  60. Stroke. 2022 May;53(5):1473-1486 [PMID: 35387495]
  61. Mol Neurobiol. 2023 Feb;60(2):923-959 [PMID: 36383328]
  62. Sleep Breath. 2013 Sep;17(3):905-10 [PMID: 23371889]
  63. Eur Heart J. 2018 Oct 7;39(38):3528-3539 [PMID: 29905797]
  64. Sleep Med. 2017 Apr;32:246-256 [PMID: 27743803]
  65. BMC Public Health. 2023 Jul 31;23(1):1465 [PMID: 37525176]
  66. Brain Behav Immun. 2017 Feb;60:1-12 [PMID: 26995317]
  67. Sci Signal. 2017 Jan 24;10(463): [PMID: 28119463]

Grants

  1. /Institute of Sports Development Research of Tsinghua University (Research on John Mo's thought and practice of Physical Education)

MeSH Term

Animals
Mice
Male
Sleep Deprivation
Biomarkers
Female
Humans
Cognition
Adult
Inflammation
Middle Aged
Mice, Inbred C57BL
Young Adult
Cognitive Dysfunction
Sleep

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0sleepshortcognitiveinflammatorybiomarkersfunctioncellularpathwaysmicedeprivationmolecularexploremechanismsSIIintegratedassociatedlowertestsstudyneuronsstressAIMS:mechanismshort-sleepconditionscognitionremainslargelyunknownresearchaimedinvestigateassociationsUSpopulationNHANESdata2011-2014METHODS:Systemicimmune-inflammationindexcalculatedusingblood-cellbasedemployedbioinformaticssingle-celltranscriptomicsGSE137665examineexposureinfluencedinflammationbrainsignalingbiologicalprocessescarriedenrichmentanalysesutilizingGOKEGGdatabasesRESULTS:PopulationresultsshowedcomparednormalgroupsevereabilityfourMoreoverhigherlevelcorrelatedscoreselevatedactivationpathwayobservedcellsubgroupswithinrecoverycohortsAdditionallyheightenedexpressionoxidativeresponsenotedGABAergicCONCLUSION:contributedunderstandinginfluenceExploringpotentialrelationshiprisksperspectivepathways:Insightspopulation-basedstudies

Similar Articles

Cited By