CCR5-overexpressing mesenchymal stem cells protect against experimental autoimmune uveitis: insights from single-cell transcriptome analysis.

Fa Yuan, Rong Zhang, Jiani Li, Qiannan Lei, Shuyi Wang, Fanying Jiang, Yanan Guo, Mengqing Xiang
Author Information
  1. Fa Yuan: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  2. Rong Zhang: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  3. Jiani Li: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  4. Qiannan Lei: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  5. Shuyi Wang: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  6. Fanying Jiang: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  7. Yanan Guo: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
  8. Mengqing Xiang: State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China. xiangmq3@mail.sysu.edu.cn.

Abstract

Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that M��ller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.

Keywords

References

  1. Ophthalmic Res. 2008;40(3-4):169-74 [PMID: 18421234]
  2. J Neuroinflammation. 2017 Jul 18;14(1):136 [PMID: 28720143]
  3. Gut. 2011 Jun;60(6):788-98 [PMID: 21257987]
  4. Jpn J Ophthalmol. 1991;35(1):51-60 [PMID: 1895569]
  5. J Exp Med. 2008 Apr 14;205(4):799-810 [PMID: 18391061]
  6. Science. 2020 Nov 20;370(6519): [PMID: 33004674]
  7. Front Cell Dev Biol. 2021 Oct 04;9:755544 [PMID: 34671605]
  8. J Exp Med. 1998 Jan 5;187(1):129-34 [PMID: 9419219]
  9. Annu Rev Immunol. 1997;15:675-705 [PMID: 9143704]
  10. PLoS One. 2014 May 07;9(5):e93735 [PMID: 24807059]
  11. Nat Med. 2007 Jun;13(6):711-8 [PMID: 17496900]
  12. Nat Immunol. 2001 Feb;2(2):102-7 [PMID: 11175801]
  13. Theranostics. 2019 Feb 28;9(6):1683-1697 [PMID: 31037131]
  14. Stem Cells. 2014 Jul;32(7):1890-903 [PMID: 24496849]
  15. Cell Death Dis. 2023 Feb 15;14(2):126 [PMID: 36792584]
  16. Nature. 2019 Jan;565(7741):544-545 [PMID: 30696963]
  17. Front Immunol. 2020 May 21;11:975 [PMID: 32508841]
  18. Gastroenterology. 2015 Oct;149(4):918-27.e6 [PMID: 26116801]
  19. Jpn J Ophthalmol. 1988;32(3):348-57 [PMID: 3265967]
  20. Front Cell Neurosci. 2018 Nov 12;12:410 [PMID: 30483060]
  21. Nat Rev Immunol. 2002 Feb;2(2):85-95 [PMID: 11910899]
  22. Leukemia. 2015 Mar;29(3):636-46 [PMID: 25034146]
  23. CNS Neurosci Ther. 2019 May;25(5):575-590 [PMID: 30676698]
  24. Prog Retin Eye Res. 2021 Jan;80:100866 [PMID: 32422390]
  25. J Cell Mol Med. 2008 Dec;12(6A):2449-56 [PMID: 18266969]
  26. J Clin Invest. 2010 Sep;120(9):3073-83 [PMID: 20811163]
  27. Curr Biol. 1998 Sep 10;8(18):R646-9 [PMID: 9740797]
  28. Am J Ophthalmol. 1982 Feb;93(2):224-31 [PMID: 7039327]
  29. Theranostics. 2018 Nov 12;8(21):5929-5944 [PMID: 30613272]
  30. Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):5016-5027 [PMID: 32071204]
  31. J Cereb Blood Flow Metab. 2013 Sep;33(9):1322-34 [PMID: 23756689]
  32. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  33. Proc Natl Acad Sci U S A. 2019 May 14;116(20):9989-9998 [PMID: 31023885]
  34. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  35. Eur J Immunol. 2004 Oct;34(10):2885-94 [PMID: 15368305]
  36. Nature. 2017 Aug 3;548(7665):103-107 [PMID: 28746305]
  37. Transplantation. 2009 May 15;87(9 Suppl):S42-5 [PMID: 19424004]
  38. Med Res Rev. 2016 Nov;36(6):1080-1126 [PMID: 27439773]
  39. Inflamm Res. 2012 Jul;61(7):759-73 [PMID: 22487851]
  40. Curr Eye Res. 1998 Oct;17(10):955-61 [PMID: 9788297]
  41. JCI Insight. 2020 Jun 18;5(12): [PMID: 32453713]
  42. Indian J Ophthalmol. 2013 Jun;61(6):253-4 [PMID: 23803475]
  43. Drug Discov Today. 2021 Dec;26(12):2839-2857 [PMID: 34229084]
  44. Invest Ophthalmol Vis Sci. 2011 May 16;52(6):3143-52 [PMID: 21296818]
  45. J Autoimmun. 2005 Feb;24(1):25-32 [PMID: 15725573]
  46. Am J Ophthalmol. 1990 Aug 15;110(2):135-42 [PMID: 2378377]
  47. Front Cell Neurosci. 2020 Nov 19;14:577935 [PMID: 33328889]
  48. Sci Rep. 2017 Jun 28;7(1):4323 [PMID: 28659587]
  49. J Transl Med. 2021 Apr 17;19(1):156 [PMID: 33865426]
  50. Ocul Immunol Inflamm. 2018;26(8):1228-1236 [PMID: 28914568]
  51. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  52. Exp Eye Res. 2004 Jun;78(6):1043-55 [PMID: 15109911]
  53. J Leukoc Biol. 2006 Mar;79(3):435-43 [PMID: 16365158]
  54. Mol Brain. 2015 May 13;8:28 [PMID: 25966682]
  55. Int Rev Immunol. 2002 Mar-Jun;21(2-3):209-29 [PMID: 12424844]
  56. Curr Opin Immunol. 2010 Dec;22(6):768-74 [PMID: 21093239]
  57. Int J Mol Sci. 2021 Apr 28;22(9): [PMID: 33924833]
  58. Prog Neurobiol. 2011 Oct;95(2):213-28 [PMID: 21903148]
  59. Nature. 1992 Jul 9;358(6382):155-7 [PMID: 1377368]
  60. Front Mol Neurosci. 2017 Oct 30;10:348 [PMID: 29163026]
  61. Int Rev Immunol. 2002 Mar-Jun;21(2-3):197-208 [PMID: 12424843]
  62. Exp Eye Res. 1991 Nov;53(5):603-7 [PMID: 1743259]
  63. Invest Ophthalmol Vis Sci. 2001 Aug;42(9):2004-9 [PMID: 11481264]
  64. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13717-22 [PMID: 26483457]
  65. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):26734-26744 [PMID: 31843893]
  66. PLoS One. 2013 Aug 28;8(8):e72161 [PMID: 24015215]
  67. Stroke. 2011 Mar;42(3):740-4 [PMID: 21307396]
  68. Methods Mol Biol. 2019;1899:211-227 [PMID: 30649775]
  69. Bone Marrow Transplant. 2010 Dec;45(12):1732-40 [PMID: 20818445]
  70. J Immunol. 2015 Apr 15;194(8):3634-45 [PMID: 25769927]
  71. Cell Med. 2011 Oct 01;2(2):55-67 [PMID: 26998402]
  72. Prog Retin Eye Res. 2008 Sep;27(5):527-35 [PMID: 18723108]
  73. Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1550-6 [PMID: 16565391]
  74. Oxid Med Cell Longev. 2021 Sep 30;2021:1552127 [PMID: 34630845]
  75. Methods Mol Biol. 2020;2111:91-99 [PMID: 31933201]
  76. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11181-6 [PMID: 25024200]
  77. Science. 1987 Aug 28;237(4818):1029-32 [PMID: 2956685]
  78. Invest Ophthalmol Vis Sci. 2005 Oct;46(10):3753-60 [PMID: 16186359]
  79. J Immunol. 1998 Jul 1;161(1):122-7 [PMID: 9647215]
  80. Front Cell Dev Biol. 2021 May 20;9:669696 [PMID: 34095138]
  81. Clin Med Res. 2006 Dec;4(4):294-309 [PMID: 17210978]
  82. J Immunol. 2009 May 15;182(10):5994-6002 [PMID: 19414750]
  83. J Immunol. 1988 Apr 1;140(7):2193-6 [PMID: 2965182]
  84. Cell Stem Cell. 2009 Jul 2;5(1):54-63 [PMID: 19570514]
  85. Cell Syst. 2019 Apr 24;8(4):281-291.e9 [PMID: 30954476]
  86. Nat Biotechnol. 2024 Feb;42(2):293-304 [PMID: 37231261]
  87. Transplantation. 2006 May 27;81(10):1390-7 [PMID: 16732175]
  88. Am J Trop Med Hyg. 1980 Nov;29(6):1181-6 [PMID: 7446809]
  89. J Comp Neurol. 1996 Apr 08;367(3):329-41 [PMID: 8698895]
  90. Trends Immunol. 2015 Jun;36(6):354-63 [PMID: 25981967]
  91. Blood. 1997 Aug 1;90(3):909-28 [PMID: 9242519]
  92. Invest Ophthalmol Vis Sci. 2022 May 2;63(5):6 [PMID: 35506935]
  93. Nat Immunol. 2008 Sep;9(9):970-80 [PMID: 18711434]
  94. J Autoimmun. 2024 Feb;143:103160 [PMID: 38160538]
  95. Br J Ophthalmol. 1996 Sep;80(9):844-8 [PMID: 8962842]
  96. Br J Ophthalmol. 2004 Sep;88(9):1159-62 [PMID: 15317708]
  97. Front Immunol. 2021 May 12;12:606963 [PMID: 34054794]
  98. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  99. Am J Ophthalmol. 1989 Jun 15;107(6):632-41 [PMID: 2729411]
  100. J Autoimmun. 2013 Aug;44:21-33 [PMID: 23810578]
  101. Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):158-63 [PMID: 26699483]
  102. Annu Rev Immunol. 1996;14:301-31 [PMID: 8717517]
  103. Front Immunol. 2018 Apr 16;9:765 [PMID: 29713325]
  104. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7462-6 [PMID: 10377437]
  105. Jpn J Ophthalmol. 2007 Jan-Feb;51(1):41-4 [PMID: 17295139]
  106. Nat Rev Neurosci. 2018 Oct;19(10):610-621 [PMID: 30206330]
  107. Circulation. 2004 Mar 30;109(12):1543-9 [PMID: 15023891]
  108. Exp Cell Res. 2017 Mar 1;352(1):164-174 [PMID: 28189638]
  109. J Exp Med. 2006 Nov 27;203(12):2727-35 [PMID: 17116738]
  110. JAMA Ophthalmol. 2016 Nov 01;134(11):1237-1245 [PMID: 27608193]
  111. Springer Semin Immunopathol. 1999;21(3):263-85 [PMID: 10666773]
  112. J Clin Immunol. 1999 Jul;19(4):215-22 [PMID: 10471975]
  113. Nat Rev Immunol. 2012 Apr 25;12(5):383-96 [PMID: 22531326]
  114. Mol Immunol. 2019 Jan;105:107-115 [PMID: 30502718]
  115. J Ocul Pharmacol Ther. 2001 Apr;17(2):181-7 [PMID: 11324985]
  116. Invest Ophthalmol Vis Sci. 2003 Jan;44(1):226-34 [PMID: 12506079]
  117. Cell Mol Life Sci. 2013 Jul;70(14):2519-32 [PMID: 23064704]
  118. STAR Protoc. 2023 Apr 21;4(2):102177 [PMID: 37086411]
  119. J Immunol. 1988 Mar 1;140(5):1490-5 [PMID: 3346541]
  120. Invest Ophthalmol Vis Sci. 2010 Jun;51(6):3067-75 [PMID: 20089879]
  121. Sci Adv. 2020 May 29;6(22):eaaz5858 [PMID: 32523990]
  122. Methods Mol Biol. 2012;900:443-69 [PMID: 22933083]
  123. Invest Ophthalmol Vis Sci. 2000 Jan;41(1):127-31 [PMID: 10634611]
  124. Cells. 2021 Apr 14;10(4): [PMID: 33919910]

Grants

  1. 81970794/National Natural Science Foundation of China
  2. 2021ZD0202603/"Technology Innovation 2030-Major Projects" on Brain Science and Brain-Like Computing of the Ministry of Science and Technology of China
  3. 2023B1212060018/The Science and Technology Planning Project of Guangdong Province

MeSH Term

Animals
Mice
Mesenchymal Stem Cells
Uveitis
Receptors, CCR5
Mice, Inbred C57BL
Single-Cell Analysis
Autoimmune Diseases
Gene Expression Profiling
Disease Models, Animal
Female
Single-Cell Gene Expression Analysis

Chemicals

Receptors, CCR5
CCR5 protein, mouse

Word Cloud

Created with Highcharts 10.0.0EAUcellsuveitisautoimmunestemmodelsprovidescRNA-seqmolecularexperimentalCCL5mesenchymalinsightsAutoimmuneleadingcauseseverevisionlossanimaluniqueopportunitiesstudyingpathogenesistherapeuticstrategiesemployRNA-seqvariouscellularapproachescharacterizemouseclassicalrevealingcausesbroadretinalneurondegenerationmarkerdownregulationM��llergliamayactantigen-presentingMoreoverimmuneresponseprimarilydrivenTh1resultsdramaticupregulationCCchemokinesespeciallyretinaAccordinglyoverexpressionCCR5receptorMSCsenhanceshomingcapacityimprovesimmunomodulatoryoutcomespreventingreducinginfiltratingTactivatedmicrogliasuppressingNlrp3inflammasomeactivationTakentogetherdatavaluablecharacteristicsalsoopenavenueinnovativeMSC-basedtherapyCCR5-overexpressingprotectuveitis:single-celltranscriptomeanalysisCCL5/CCR5ExperimentalMesenchymal

Similar Articles

Cited By