Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures.

Yongdong Ouyang, Monica Taljaard, Andrew B Forbes, Fan Li
Author Information
  1. Yongdong Ouyang: Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada. ORCID
  2. Monica Taljaard: Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
  3. Andrew B Forbes: School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
  4. Fan Li: Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. ORCID

Abstract

Linear mixed models are commonly used in analyzing stepped-wedge cluster randomized trials. A key consideration for analyzing a stepped-wedge cluster randomized trial is accounting for the potentially complex correlation structure, which can be achieved by specifying random-effects. The simplest random effects structure is random intercept but more complex structures such as random cluster-by-period, discrete-time decay, and more recently, the random intervention structure, have been proposed. Specifying appropriate random effects in practice can be challenging: assuming more complex correlation structures may be reasonable but they are vulnerable to computational challenges. To circumvent these challenges, robust variance estimators may be applied to linear mixed models to provide consistent estimators of standard errors of fixed effect parameters in the presence of random-effects misspecification. However, there has been no empirical investigation of robust variance estimators for stepped-wedge cluster randomized trials. In this article, we review six robust variance estimators (both standard and small-sample bias-corrected robust variance estimators) that are available for linear mixed models in R, and then describe a comprehensive simulation study to examine the performance of these robust variance estimators for stepped-wedge cluster randomized trials with a continuous outcome under different data generators. For each data generator, we investigate whether the use of a robust variance estimator with either the random intercept model or the random cluster-by-period model is sufficient to provide valid statistical inference for fixed effect parameters, when these working models are subject to random-effect misspecification. Our results indicate that the random intercept and random cluster-by-period models with robust variance estimators performed adequately. The CR3 robust variance estimator (approximate jackknife) estimator, coupled with the number of clusters minus two degrees of freedom correction, consistently gave the best coverage results, but could be slightly conservative when the number of clusters was below 16. We summarize the implications of our results for the linear mixed model analysis of stepped-wedge cluster randomized trials and offer some practical recommendations on the choice of the analytic model.

Keywords

References

  1. Int J Epidemiol. 2023 Oct 5;52(5):1634-1647 [PMID: 37196320]
  2. Biostatistics. 2022 Jul 18;23(3):772-788 [PMID: 33527999]
  3. Stat Med. 2016 Nov 20;35(26):4718-4728 [PMID: 27350420]
  4. Stat Med. 2020 Feb 20;39(4):438-455 [PMID: 31797438]
  5. Stat Med. 2016 Jun 15;35(13):2149-66 [PMID: 26748662]
  6. PLoS One. 2018 Dec 13;13(12):e0208876 [PMID: 30543671]
  7. Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3112-3122 [PMID: 30189794]
  8. Stat Med. 2020 Mar 4;: [PMID: 32133688]
  9. Clin Trials. 2022 Jun;19(3):316-325 [PMID: 35706343]
  10. Stat Med. 2021 Sep 10;40(20):4442-4456 [PMID: 34018624]
  11. Stat Med. 2008 Nov 29;27(27):5764-85 [PMID: 18680122]
  12. Biometrics. 2007 Dec;63(4):1038-44 [PMID: 17425642]
  13. Stat Med. 2020 Sep 20;39(21):2779-2792 [PMID: 32578264]
  14. Biometrics. 2020 Mar;76(1):119-130 [PMID: 31237680]
  15. Stat Methods Med Res. 2021 Feb;30(2):425-439 [PMID: 32970526]
  16. Stat Methods Med Res. 2021 Feb;30(2):612-639 [PMID: 32631142]
  17. Stat Methods Med Res. 2021 Nov;30(11):2503-2525 [PMID: 34569853]
  18. BMJ Open. 2022 Dec 9;12(12):e067656 [PMID: 36600344]
  19. Biometrics. 2023 Mar;79(1):98-112 [PMID: 34719017]
  20. Stat Med. 2017 Oct 15;36(23):3670-3682 [PMID: 28556355]
  21. Stat Methods Med Res. 2023 Jan;32(1):71-87 [PMID: 36253078]
  22. Stat Med. 2020 Mar 30;39(7):815-844 [PMID: 31876979]
  23. Biom J. 2022 Mar;64(3):419-439 [PMID: 34596912]
  24. Stat Methods Med Res. 2017 Apr;26(2):583-597 [PMID: 25267551]
  25. Stat Methods Med Res. 2023 Nov;32(11):2123-2134 [PMID: 37589088]
  26. Clin Trials. 2021 Oct;18(5):529-540 [PMID: 34088230]
  27. Stat Med. 2022 May 10;41(10):1751-1766 [PMID: 35137437]
  28. Biometrics. 2007 Sep;63(3):935-41 [PMID: 17825023]
  29. Contemp Clin Trials. 2007 Feb;28(2):182-91 [PMID: 16829207]
  30. Biometrics. 2001 Dec;57(4):1198-206 [PMID: 11764261]
  31. BMC Med Res Methodol. 2020 Jun 24;20(1):166 [PMID: 32580698]
  32. Comput Methods Programs Biomed. 2022 Jan;213:106522 [PMID: 34818620]
  33. J Clin Epidemiol. 2023 May;157:134-145 [PMID: 36931478]
  34. Int J Epidemiol. 2020 Jun 1;49(3):979-995 [PMID: 32087011]
  35. Biometrics. 2017 Mar;73(1):63-71 [PMID: 27377556]
  36. BMC Med Res Methodol. 2023 Mar 17;23(1):64 [PMID: 36932347]
  37. Stat Med. 2018 Jul 20;37(16):2487-2500 [PMID: 29635789]
  38. Biometrics. 2001 Mar;57(1):126-34 [PMID: 11252587]
  39. BMC Med Res Methodol. 2016 Jun 06;16:69 [PMID: 27267471]
  40. Biometrics. 2023 Sep;79(3):2551-2564 [PMID: 36416302]
  41. Contemp Clin Trials. 2015 Nov;45(Pt A):55-60 [PMID: 26247569]
  42. Comput Methods Programs Biomed. 2020 Nov;196:105514 [PMID: 32554025]
  43. Biometrics. 2018 Dec;74(4):1450-1458 [PMID: 29921006]
  44. Trials. 2017 Mar 4;18(1):101 [PMID: 28259174]
  45. Stat Methods Med Res. 2019 Mar;28(3):703-716 [PMID: 29027505]
  46. Ann Hum Genet. 1982 Jul;46(3):271-7 [PMID: 7125598]
  47. Stat Med. 2022 Sep 30;41(22):4311-4339 [PMID: 35774016]
  48. BMC Med Res Methodol. 2006 Nov 08;6:54 [PMID: 17092344]
  49. Clin Trials. 2024 Apr;21(2):199-210 [PMID: 37990575]
  50. Biometrics. 1946 Dec;2(6):110-4 [PMID: 20287815]
  51. Stat Med. 2019 May 20;38(11):2074-2102 [PMID: 30652356]
  52. Stat Med. 2017 Aug 15;36(18):2831-2843 [PMID: 28464567]
  53. Int J Epidemiol. 2022 Dec 13;51(6):2000-2013 [PMID: 35679584]
  54. Stat Biosci. 2020 Dec;12(3):399-415 [PMID: 33747241]
  55. Comput Methods Programs Biomed. 2021 Sep;208:106255 [PMID: 34260969]
  56. Multivariate Behav Res. 2023 May-Jun;58(3):637-657 [PMID: 35687513]

Grants

  1. U54 AG063546/NIA NIH HHS

MeSH Term

Randomized Controlled Trials as Topic
Linear Models
Humans
Cluster Analysis
Bias
Models, Statistical
Computer Simulation
Data Interpretation, Statistical

Word Cloud

Created with Highcharts 10.0.0randomvariancerobustestimatorsmodelsstepped-wedgeclusterrandomizedmodelmixedtrialsstructurelinearestimatorcomplexrandom-effectsinterceptstructurescluster-by-periodmisspecificationresultsanalyzingcorrelationcaneffectsmaychallengesprovidestandardfixedeffectparameterssmall-sampledatainferencenumberclustersdegreesfreedomcorrectionLinearcommonlyusedkeyconsiderationtrialaccountingpotentiallyachievedspecifyingsimplestdiscrete-timedecayrecentlyinterventionproposedSpecifyingappropriatepracticechallenging:assumingreasonablevulnerablecomputationalcircumventappliedconsistenterrorspresenceHoweverempiricalinvestigationarticlereviewsixbias-correctedavailableRdescribecomprehensivesimulationstudyexamineperformancecontinuousoutcomedifferentgeneratorsgeneratorinvestigatewhetheruseeithersufficientvalidstatisticalworkingsubjectrandom-effectindicateperformedadequatelyCR3approximatejackknifecoupledminustwoconsistentlygavebestcoverageslightlyconservative16summarizeimplicationsanalysisofferpracticalrecommendationschoiceanalyticMaintainingvaliditymisspecifiedCorrelationmixed-effectssandwich

Similar Articles

Cited By