Using phage to drive selections toward restoring antibiotic sensitivity in via chromosomal deletions.

Jumpei Fujiki, Keisuke Nakamura, Yuko Ishiguro, Hidetomo Iwano
Author Information
  1. Jumpei Fujiki: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
  2. Keisuke Nakamura: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
  3. Yuko Ishiguro: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
  4. Hidetomo Iwano: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.

Abstract

Phage therapy has re-emerged in modern medicine as a robust antimicrobial strategy in response to the increasing prevalence of antimicrobial-resistant bacteria. However, bacterial resistance to phages can also arise via a variety of molecular mechanisms. In fact, several clinical studies on phage therapy have reported the occurrence of phage-resistant variants, representing a significant concern for the successful development of phage-based therapies. In this context, the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy as a countermeasure against phage resistance. This strategy forces to restore the antibiotic susceptibility of antimicrobial-resistant bacteria as compensation for the development of phage resistance. Here, we present the key achievements of these fitness trade-offs, notably focusing on the enhancement of antibiotic sensitivity through the induction of large chromosomal deletions by bacteriophage infection. We also describe the challenges of this strategy that need to be overcome to promote favorable therapeutic outcomes and discuss future directions. The insights gained from the trade-offs between phage and antibiotic sensitivity will help maximize the potential of phage therapy for the treatment of infectious diseases.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20440-5 [PMID: 19906986]
  2. JAC Antimicrob Resist. 2021 Dec 10;3(4):dlab179 [PMID: 34909689]
  3. J Infect Dis. 2017 Mar 1;215(5):703-712 [PMID: 28007922]
  4. Cell Host Microbe. 2019 Feb 13;25(2):219-232 [PMID: 30763536]
  5. Antimicrob Agents Chemother. 2020 Mar 24;64(4): [PMID: 31964794]
  6. Antibiotics (Basel). 2022 Oct 18;11(10): [PMID: 36290092]
  7. Antimicrob Agents Chemother. 2006 Apr;50(4):1347-51 [PMID: 16569851]
  8. Appl Environ Microbiol. 2016 Aug 15;82(17):5332-9 [PMID: 27342558]
  9. Evol Med Public Health. 2020 Jul 11;2020(1):148-157 [PMID: 34254028]
  10. Microbiol Spectr. 2023 Dec 12;11(6):e0147723 [PMID: 37966242]
  11. Nat Rev Microbiol. 2021 May;19(5):331-342 [PMID: 33214718]
  12. Cell Rep. 2021 Aug 24;36(8):109567 [PMID: 34433028]
  13. Infect Immun. 2020 Jun 22;88(7): [PMID: 32094257]
  14. Signal Transduct Target Ther. 2022 Jun 25;7(1):199 [PMID: 35752612]
  15. Front Microbiol. 2018 Jun 01;9:1170 [PMID: 29910791]
  16. Int J Mol Sci. 2023 Oct 26;24(21): [PMID: 37958612]
  17. Front Microbiol. 2022 Oct 06;13:1004733 [PMID: 36274728]
  18. Sci Rep. 2022 Dec 9;12(1):21297 [PMID: 36494564]
  19. Antimicrob Agents Chemother. 2018 Sep 24;62(10): [PMID: 30082283]
  20. Appl Environ Microbiol. 2016 Jul 15;82(15):4482-4491 [PMID: 27208109]
  21. Sci Rep. 2014 Apr 28;4:4738 [PMID: 24770387]
  22. Sci Rep. 2016 May 26;6:26717 [PMID: 27225966]
  23. Virus Res. 2021 Dec;306:198596 [PMID: 34648885]
  24. Nucleic Acids Res. 2018 May 18;46(9):4505-4514 [PMID: 29514250]
  25. J Antimicrob Chemother. 2021 Sep 15;76(10):2546-2557 [PMID: 34219168]
  26. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  27. Annu Rev Virol. 2023 Sep 29;10(1):503-524 [PMID: 37268007]
  28. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1767-78 [PMID: 26729493]
  29. Clin Microbiol Rev. 2019 Aug 14;32(4): [PMID: 31413045]
  30. Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0023922 [PMID: 35862755]
  31. J Med Microbiol. 2019 Jan;68(1):1-10 [PMID: 30605076]
  32. Cell. 2023 Jan 5;186(1):17-31 [PMID: 36608652]
  33. Microbiol Immunol. 2020 Nov;64(11):778-782 [PMID: 32918505]
  34. Front Microbiol. 2021 Dec 02;12:783722 [PMID: 34925289]
  35. mSphere. 2024 Feb 28;9(2):e0055323 [PMID: 38299825]
  36. PLoS Biol. 2017 Aug 8;15(8):e2001586 [PMID: 28792497]
  37. Microbiol Spectr. 2022 Oct 26;10(5):e0207222 [PMID: 36129287]

Word Cloud

Created with Highcharts 10.0.0phageresistanceantibiotictherapystrategybacteriatrade-offssensitivityantimicrobialantimicrobial-resistantalsoviadevelopmentfitnesschromosomaldeletionsPhagere-emergedmodernmedicinerobustresponseincreasingprevalenceHoweverbacterialphagescanarisevarietymolecularmechanismsfactseveralclinicalstudiesreportedoccurrencephage-resistantvariantsrepresentingsignificantconcernsuccessfulphage-basedtherapiescontextrevealednewavenuesfieldcountermeasureforcesrestoresusceptibilitycompensationpresentkeyachievementsnotablyfocusingenhancementinductionlargebacteriophageinfectiondescribechallengesneedovercomepromotefavorabletherapeuticoutcomesdiscussfuturedirectionsinsightsgainedwillhelpmaximizepotentialtreatmentinfectiousdiseasesUsingdriveselectionstowardrestoringAMRESKAPEMexXY/OprMfluoroquinolonesgalUphage-resistance

Similar Articles

Cited By