The short-chain fatty acid propionate prevents ox-LDL-induced coronary microvascular dysfunction by alleviating endoplasmic reticulum stress in HCMECs.

Dan Hong, Wen Tang, Fei Li, Yating Liu, Xiao Fu, Qin Xu
Author Information
  1. Dan Hong: Department of Geriatric Medicine, Xiangya Hospital, Central South University, Hunan, China. ORCID
  2. Wen Tang: Department of Geriatric Medicine, Xiangya Hospital, Central South University, Hunan, China.
  3. Fei Li: Department of Geriatric Medicine, Xiangya Hospital, Central South University, Hunan, China.
  4. Yating Liu: Department of Geriatric Medicine, Xiangya Hospital, Central South University, Hunan, China.
  5. Xiao Fu: Department of Hematology Medicine, Xiangya Hospital, Central South University, Hunan, China.
  6. Qin Xu: Department of Cardiology Medicine, Brain Hospital of Hunan Province, Hunan, China.

Abstract

Coronary microvascular dysfunction (CMD) is a critical pathogenesis of cardiovascular diseases. Lower endothelial nitric oxide synthase (eNOS) phosphorylation leads to reduced endothelium-derived relaxing factor nitric oxide (NO) generation, causing and accelerating CMD. Endoplasmic reticulum stress (ER stress) has been shown to reduce NO production in umbilical vein endothelial cells. Oxidized low-density lipoprotein (ox-LDL) damages endothelial cell function. However, the relationship between ox-LDL and coronary microcirculation has yet to be assessed. Short-chain fatty acid (SCFA), a fermentation product of the gut microbiome, could improve endothelial-dependent vasodilation in human adipose arterioles, but the effect of SCFA on coronary microcirculation is unclear. In this study, we found ox-LDL stimulated expression of ER chaperone GRP78. Further, we activated downstream PERK/eIF2a, IRE1/JNK, and ATF6 signaling pathways, decreasing eNOS phosphorylation and NO production in human cardiac microvascular endothelial. Furthermore, SCFA-propionate can inhibit ox-LDL-induced eNOS phosphorylation reduction and raise NO production; the mechanism is related to the inhibition of ER stress and downstream signaling pathways PERK/eIF2a, IRE1/JNK, and ATF6. In summary, we demonstrate that ox-LDL induced CMD by activating ER stress, propionate can effectively counteract the adverse effects of ox-LDL and protect coronary microcirculation function via inhibiting ER stress.

References

  1. Int J Biol Sci. 2022 Jan 1;18(2):858-872 [PMID: 35002530]
  2. Scand Cardiovasc J. 2019 Feb;53(1):1-8 [PMID: 30741027]
  3. Circulation. 2020 Apr 28;141(17):1393-1403 [PMID: 32093510]
  4. Front Endocrinol (Lausanne). 2020 Jan 31;11:25 [PMID: 32082260]
  5. Hepatology. 2018 Apr;67(4):1485-1498 [PMID: 29113028]
  6. Food Funct. 2021 Dec 13;12(24):12580-12593 [PMID: 34813637]
  7. Circulation. 2019 Mar 12;139(11):1407-1421 [PMID: 30586752]
  8. JACC Cardiovasc Imaging. 2019 Aug;12(8 Pt 1):1430-1440 [PMID: 29909101]
  9. Curr Opin Cardiol. 2018 Nov;33(6):638-644 [PMID: 30303854]
  10. J Am Coll Cardiol. 2018 Nov 27;72(21):2625-2641 [PMID: 30466521]
  11. J Am Heart Assoc. 2016 Jan 11;5(1): [PMID: 26755554]
  12. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4410-5 [PMID: 23401498]
  13. Hypertension. 2022 Apr;79(4):691-705 [PMID: 35098718]
  14. Circ Res. 2018 Oct 12;123(9):1091-1102 [PMID: 30355158]
  15. Ageing Res Rev. 2015 Jan;19:43-52 [PMID: 25500366]
  16. Clin Chem. 2021 Jan 8;67(1):167-182 [PMID: 33221847]
  17. J Clin Med. 2020 Sep 06;9(9): [PMID: 32899944]
  18. Angiology. 2021 May;72(5):411-425 [PMID: 33478246]
  19. J Cell Physiol. 2020 Mar;235(3):3079-3095 [PMID: 31566720]
  20. Hypertension. 2012 Jul;60(1):71-80 [PMID: 22665120]
  21. Front Cardiovasc Med. 2021 Oct 04;8:742178 [PMID: 34671656]
  22. Molecules. 2021 Jul 11;26(14): [PMID: 34299486]
  23. Curr Mol Pharmacol. 2023;16(2):139-146 [PMID: 35232343]
  24. Antioxidants (Basel). 2021 Jul 22;10(8): [PMID: 34439415]
  25. Gut Microbes. 2016 May 3;7(3):189-200 [PMID: 26963409]
  26. Coron Artery Dis. 2014 Aug;25(5):439-49 [PMID: 24818640]
  27. Folia Morphol (Warsz). 2024;83(1):92-101 [PMID: 37144848]
  28. Mol Nutr Food Res. 2018 May;62(10):e1700942 [PMID: 29665623]
  29. Vascul Pharmacol. 2018 Jan;100:1-19 [PMID: 28579545]
  30. Biochem Pharmacol. 2022 Aug;202:115108 [PMID: 35643340]
  31. Atherosclerosis. 2014 Aug;235(2):310-7 [PMID: 24911634]

MeSH Term

Humans
Endoplasmic Reticulum Stress
Lipoproteins, LDL
Nitric Oxide Synthase Type III
Endoplasmic Reticulum Chaperone BiP
Propionates
Nitric Oxide
Signal Transduction
Phosphorylation
Endothelial Cells
Coronary Vessels
Fatty Acids, Volatile
eIF-2 Kinase
Activating Transcription Factor 6
Microcirculation
Heat-Shock Proteins

Chemicals

Lipoproteins, LDL
oxidized low density lipoprotein
Nitric Oxide Synthase Type III
HSPA5 protein, human
Endoplasmic Reticulum Chaperone BiP
Propionates
Nitric Oxide
NOS3 protein, human
Fatty Acids, Volatile
eIF-2 Kinase
Activating Transcription Factor 6
Heat-Shock Proteins

Word Cloud

Created with Highcharts 10.0.0stressERox-LDLendothelialNOcoronarymicrovascularCMDeNOSphosphorylationproductionmicrocirculationdysfunctionnitricoxidereticulumfunctionfattyacidSCFAhumandownstreamPERK/eIF2aIRE1/JNKATF6signalingpathwayscanox-LDL-inducedpropionateCoronarycriticalpathogenesiscardiovasculardiseasesLowersynthaseleadsreducedendothelium-derivedrelaxingfactorgenerationcausingacceleratingEndoplasmicshownreduceumbilicalveincellsOxidizedlow-densitylipoproteindamagescellHoweverrelationshipyetassessedShort-chainfermentationproductgutmicrobiomeimproveendothelial-dependentvasodilationadiposearterioleseffectunclearstudyfoundstimulatedexpressionchaperoneGRP78activateddecreasingcardiacFurthermoreSCFA-propionateinhibitreductionraisemechanismrelatedinhibitionsummarydemonstrateinducedactivatingeffectivelycounteractadverseeffectsprotectviainhibitingshort-chainpreventsalleviatingendoplasmicHCMECs

Similar Articles

Cited By