Using DNA metabarcoding to characterize national scale diatom-environment relationships and to develop indicators in streams and rivers of the United States.

Nathan J Smucker, Erik M Pilgrim, Christopher T Nietch, Leslie Gains-Germain, Charlie Carpenter, John A Darling, Lester L Yuan, Richard M Mitchell, Amina I Pollard
Author Information
  1. Nathan J Smucker: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA. Electronic address: smucker.nathan@epa.gov.
  2. Erik M Pilgrim: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  3. Christopher T Nietch: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  4. Leslie Gains-Germain: Neptune and Company, Inc., Lakewood, CO 80215, USA.
  5. Charlie Carpenter: Neptune and Company, Inc., Lakewood, CO 80215, USA.
  6. John A Darling: United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27703, USA.
  7. Lester L Yuan: United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004, USA.
  8. Richard M Mitchell: United States Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, D.C. 20004, USA.
  9. Amina I Pollard: United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004, USA.

Abstract

Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA. At the national scale, we found that diatom assemblage structure (1) was strongly associated with total phosphorus and total nitrogen concentrations, conductivity, and pH and (2) had clear patterns that corresponded with differences in these variables among the nine ecoregions. These four variables were strong predictors of diatom assemblage structure in ecoregion-specific analyses, but our results also showed that diatom-environment relationships, the importance of environmental variables, and the ranges of these variables within which assemblage changes occurred differed among ecoregions. To further examine how assemblage data could be used for biomonitoring purposes, we used indicator species analysis to identify ecoregion-specific taxa that decreased or increased along each environmental gradient, and we used their relative abundances of gene reads in samples as metrics. These metrics were strongly correlated with their corresponding variable of interest (e.g., low phosphorus diatoms with total phosphorus concentrations), and generalized additive models showed how their relationships compared among ecoregions. These large-scale national patterns and nine sets of ecoregional results demonstrated that diatom DNA metabarcoding is a robust approach that could be useful to monitoring and assessment programs spanning the variety of conditions that exist throughout the conterminous United States.

Keywords

References

  1. Sci Total Environ. 2021 Dec 1;798:149029 [PMID: 34375267]
  2. J Geophys Res Biogeosci. 2021 Mar;126(4):1-21 [PMID: 37089664]
  3. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5262-5269 [PMID: 30297391]
  4. Sci Total Environ. 2015 Mar 1;508:488-97 [PMID: 25514764]
  5. Environ Sci Technol. 2009 Jan 1;43(1):12-9 [PMID: 19209578]
  6. Mol Ecol Resour. 2015 May;15(3):526-42 [PMID: 25270047]
  7. Protist. 2011 Jul;162(3):405-22 [PMID: 21239228]
  8. Ecol Indic. 2022 Feb;135:1-13 [PMID: 36213608]
  9. Sci Total Environ. 2018 Oct 1;637-638:1295-1310 [PMID: 29801222]
  10. Sci Total Environ. 2020 Nov 25;745:140948 [PMID: 32736102]
  11. Limnol Oceanogr Methods. 2020 Feb 13;18(6):271-279 [PMID: 34025297]
  12. Ecol Indic. 2022 Aug;141:1-13 [PMID: 36003067]
  13. Appl Geochem. 2017 Aug 1;83:121-135 [PMID: 30220785]
  14. Mol Ecol. 2021 Jul;30(13):2959-2968 [PMID: 32979002]
  15. Ecol Appl. 2020 Dec;30(8):e02205 [PMID: 32602216]
  16. J Environ Qual. 2012 Jan-Feb;41(1):7-20 [PMID: 22218169]
  17. Sci Total Environ. 2020 Apr 15;713:136630 [PMID: 31958730]
  18. Freshw Biol. 2023 Mar 1;68(3):473-486 [PMID: 37538102]
  19. PLoS One. 2014 Jul 10;9(7):e102367 [PMID: 25010420]
  20. J Phycol. 2020 Aug;56(4):1053-1065 [PMID: 32320068]
  21. Sci Total Environ. 2020 Jul 20;727:138445 [PMID: 32334210]
  22. Sci Total Environ. 2022 Jun 1;823:153829 [PMID: 35151750]
  23. Ecol Indic. 2019 Jul 1;102:166-174 [PMID: 32802000]
  24. Sci Total Environ. 2016 Oct 15;568:671-678 [PMID: 26970666]
  25. Environ Sci Technol. 2015 Jul 07;49(13):7597-605 [PMID: 26052741]
  26. Science. 2012 Jun 15;336(6087):1438-40 [PMID: 22700929]
  27. Mol Ecol Resour. 2013 Jul;13(4):607-19 [PMID: 23590277]
  28. Sci Total Environ. 2014 Aug 1;488-489:280-9 [PMID: 24836138]
  29. Freshw Sci. 2022 Mar;41(1):100-112 [PMID: 35646474]
  30. Sci Data. 2022 Sep 3;9(1):540 [PMID: 36057654]
  31. Sci Total Environ. 2020 Feb 20;704:135268 [PMID: 31810677]
  32. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E574-E583 [PMID: 29311318]
  33. Sci Rep. 2019 Oct 22;9(1):15116 [PMID: 31641158]
  34. Mol Ecol Resour. 2017 Nov;17(6):1231-1242 [PMID: 28296259]
  35. Sci Total Environ. 2016 Aug 15;562:914-927 [PMID: 27128024]
  36. Sci Total Environ. 2020 Jun 20;722:137900 [PMID: 32199386]
  37. ISME J. 2021 Jul;15(7):1931-1942 [PMID: 33589768]
  38. Environ Pollut. 2012 Mar;162:466-74 [PMID: 22088498]
  39. Sci Total Environ. 2021 Dec 15;800:149350 [PMID: 34399326]
  40. Ecol Appl. 2023 Apr;33(3):e2812 [PMID: 36708145]
  41. J Phycol. 2014 Jun;50(3):425-36 [PMID: 26988317]
  42. Sci Total Environ. 2022 Jul 20;831:154960 [PMID: 35378187]
  43. Ecol Evol. 2018 Dec 18;9(1):166-179 [PMID: 30680104]
  44. Sci Total Environ. 2014 Mar 15;475:187-200 [PMID: 23746576]
  45. Water (Basel). 2023 Jan 6;15(2):1-26 [PMID: 38269364]
  46. Environ Sci Technol. 2012 Sep 4;46(17):9447-55 [PMID: 22839503]
  47. Trends Microbiol. 2019 May;27(5):387-397 [PMID: 30554770]
  48. J Phycol. 2020 Feb;56(1):11-22 [PMID: 31621078]
  49. J Phycol. 2014 Jun;50(3):437-61 [PMID: 26988318]
  50. Sci Total Environ. 2024 Mar 1;914:169445 [PMID: 38159778]
  51. Mol Ecol Resour. 2018 Nov;18(6):1299-1309 [PMID: 29923321]
  52. J Anim Ecol. 2008 Jul;77(4):802-13 [PMID: 18397250]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

Diatoms
Rivers
DNA Barcoding, Taxonomic
United States
Environmental Monitoring
Biodiversity

Word Cloud

Created with Highcharts 10.0.0DNAmetabarcodingdiatomecoregionsassemblagevariablesdiatomsenvironmentalUnitedStatesresultsninenationaltotalphosphorusamongrelationshipsusedusebenthicmonitoringassessmentprogramsrelativelysamplesapplicationsexiststreamsriversspanningconterminousscalestructurestronglyconcentrationspHpatternsecoregion-specificshoweddiatom-environmentmetricsRecentadvancementstechniquesbioinformaticshelpexpandprovidingquickincreasinglycost-effectivewaysquantifydiversityHoweverDNA-basedapproachesnewunknownsregardinglargescalessmall-scalestudiesdonepresentfirstnationwidesurveyrbcLcollected1788acrossUSAfound1associatednitrogenconductivity2clearcorrespondeddifferencesfourstrongpredictorsanalysesalsoimportancerangeswithinchangesoccurreddifferedexaminedatabiomonitoringpurposesindicatorspeciesanalysisidentifytaxadecreasedincreasedalonggradientrelativeabundancesgenereadscorrelatedcorrespondingvariableinteresteglowgeneralizedadditivemodelscomparedlarge-scalesetsecoregionaldemonstratedrobustapproachusefulvarietyconditionsthroughoutUsingcharacterizedevelopindicatorsBioassessmentBiomonitoringConductivityNitrogenPhosphorus

Similar Articles

Cited By

No available data.