Label-free electrochemical aptasensor for ultrasensitive lead ion detection based on flower-like AuNPs@MoS and core-shell Pt@Pd bimetallic nanoparticles.

Xuanxuan Hao, Zhimin Liu, Tongtong Zheng, Yunfeng Fan, Leqian Hu
Author Information
  1. Xuanxuan Hao: College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
  2. Zhimin Liu: College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China. zhimin@haut.edu.cn.
  3. Tongtong Zheng: College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
  4. Yunfeng Fan: College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
  5. Leqian Hu: College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.

Abstract

A signal-amplified platform was designed to construct a label-free electrochemical aptasensor for lead ions (Pb) assay. First, flower-like molybdenum disulfide-supported AuNPs (AuNPs@MoS) nanocomposites were synthesized and used as substrates for modifying the electrode. The AuNPs@MoS material possessed large surface area and superior biocompatibility, which was beneficial to improve the loading amount of the complementary DNA (cDNA) and amplified the response signal. Importantly, the prepared core-shell Pt@Pd bimetallic nanoparticles (Pt@PdNPs) were used to conjugate with redox marker thionine (Thi) and aptamer (Apt) for further signal amplification; the obtained signal probes (Thi-Pt@PdNPs-Apt) were connected by the cDNA assembled on the electrode through DNA hybridization. Differential pulse voltammetry was performed to monitor the signal of Thi. After incubating of aptasensor with Pb, the specific recognition of Pb and Apt resulted in the dissociation of aptamer-cDNA complex, thereby the Thi-Pt@PdNPs-Apt separated from the electrode surface and decreased current response was obtained. The prepared electrochemical sensor exhibited linear response to Pb in the range 5.0��������10-100 nM and a detection limit of 1.0��������10 nM was achieved. The sensor was applied to the determination of Pb in actual sample with high sensitivity and accuracy, demonstrating potential applications in heavy metal monitoring.

Keywords

References

  1. Liu XH, Li LB, Li F, Zhao WL, Luo LJ, Bi XY, Li X, You TY (2022) An ultra-high-sensitivity electrochemiluminescence aptasensor for Pb detection based on the synergistic signal-amplification strategy of quencher abscission and G-quadruplex generation. J Hazard Mater 424:127480 [PMID: 34666293]
  2. Wang Y, Han J, Liu YY, Wang L, Ni L, Tang X (2016) Recyclable non-ligand dual cloud point extraction method for determination of lead in food samples. Food Chem 190:1130���1136 [PMID: 26213086]
  3. Ran GJ, Wu FM, Ni XY, Li XY, Li XS, Liu DL, Sun JX, Xie CF, Yao DS, Bai WB (2020) A novel label-free electrochemical aptasensor with one-step assembly process for rapid detection of lead (II) ions. Sens Actuators B 320:128326 [DOI: 10.1016/j.snb.2020.128326]
  4. Bai YF, Zhao L, Chen ZH, Wang HY, Feng F (2014) A label-free fluorescent sensor for Pb based on G-quadruplex and graphene oxide. Anal Methods 6:8120���8123 [DOI: 10.1039/C4AY01389A]
  5. Huang YF, Yan J, Fang ZZ, Zhang CH, Bai WH, Yan MM, Zhu C, Gao CG, Chen AL (2016) Highly sensitive and selective optical detection of lead (II) using a label-free fluorescent aptasensor. Rsc Adv 6:90300���90304 [DOI: 10.1039/C6RA15750E]
  6. Wang YG, Zhao GH, Zhang GY, Zhang Y, Wang H, Cao W, Li TD, Wei Q (2020) An electrochemical aptasensor based on gold-modified MoS/rGO nanocomposite and gold-palladium-modified Fe-MOFs for sensitive detection of lead ions. Sens Actuators B 319:128313
  7. Yuan M, Qian SQ, Cao H, Yu JS, Ye T, Wu XX, Chen LM, Xu F (2022) An ultrasensitive electrochemical aptasensor for simultaneous quantitative detection of Pb and Cd in fruit and vegetable. Food Chem 382:132173
  8. Jaswal BBS, Rai PK, Singh T, Zorba V, Singh VK (2019) Detection and quantification of heavy metal elements in gallstones using X-ray fluorescence spectrometry. X-Ray Spectrom 48:178���187 [DOI: 10.1002/xrs.3010]
  9. Conti ME, Botre F (1997) The content of heavy metals in food packaging paper: an atomic absorption spectroscopy investigation. Food Control 8:131���136 [DOI: 10.1016/S0956-7135(97)00004-2]
  10. Roto R, Mellisani B, Kuncaka A, Mudasir M, Suratman A (2019) Colorimetric sensing of Pb ion by using Ag nanoparticles in the presence of dithizone. J Sci Chemoses 7:28
  11. Fernandez ZH, Alvarez JRE, Alvarez AM, Ugarte OM, Gonzalez IP, Gonzalez MR, Dos Santos JA, Bezerra MBCF, Dos Santos OP (2021) Metal contaminants in rice from Cuba analyzed by ICP-MS, ICP-AES and CVAAS. Food Addit Contam B 14:59���65 [DOI: 10.1080/19393210.2020.1870576]
  12. Qin JX, Su Z, Mao YH, Liu CC, Qi B, Fang GZ, Wang S (2021) Carboxyl-functionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction. Ecotoxicol Environ Saf 208:111729 [PMID: 33396060]
  13. Pan DW, Wang YE, Chen ZP, Lou TT, Qin W (2009) Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals. Anal Chem 81:5088���5094 [PMID: 19435334]
  14. Fall B, Diaw AKD, Fall M, Sall ML, Lo M, Gningue-Sall D, Thotiyl MO, Maria HJ, Kalarikkal N, Thomas S (2021) Synthesis of highly sensitive rGO@CNT@ FeO/polypyrrole nanocomposite for the electrochemical detection of Pb. Mater Today Commun 26:102005 [DOI: 10.1016/j.mtcomm.2020.102005]
  15. Yu Q, Fu YM, Xiao K, Zhang XH, Du CC, Chen JH (2022) A label-free photoelectrochemical biosensor with ultra-low-background noise for lead ion assay based on the CuO-CuO-TiO heterojunction. Anal Chim Acta 1195:339456 [PMID: 35090644]
  16. Xiong CY, Liang WB, Wang HJ, Zheng YN, Zhuo Y, Chai YQ, Yuan R (2016) In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions. Chem Commun 52:5589���5592 [DOI: 10.1039/C6CC01078D]
  17. Xu WJ, Zhou XX, Gao JX, Xue SY, Zhao JM (2017) Label-free and enzyme-free strategy for sensitive electrochemical lead aptasensor by using metal-organic frameworks loaded with AgPt nanoparticles as signal probes and electrocatalytic enhancers. Electrochim Acta 251:25���31 [DOI: 10.1016/j.electacta.2017.08.046]
  18. Taghdisi SM, Danesh NM, Lavaee P, Ramezani M, Abnous K (2016) An electrochemical aptasensor based on gold nanoparticles, thionine and hairpin structure of complementary strand of aptamer for ultrasensitive detection of lead. Sens Actuators B 234:462���469 [DOI: 10.1016/j.snb.2016.05.017]
  19. Qing M, Yuan YL, Cai W, Xie SB, Tang Y, Yuan R, Zhang J (2018) An ultrasensitive electrochemical biosensor based on multifunctional hemin/G-quadruplex nanowires simultaneously served as bienzyme and direct electron mediator for detection of lead ion. Sens Actuators B 263:469���475 [DOI: 10.1016/j.snb.2018.02.109]
  20. Gu CN, Peng Y, Li JJ, Wang H, Xie XQ, Cao XY, Liu CS (2020) Supramolecular G4 eutectogels of guanosine with solvent-induced chiral inversion and excellent electrochromic activity. Angew Chem Int Ed Engl 59:18768���18773 [PMID: 32656924]
  21. Wang YH, Wang FT, Han ZW, Huang KJ, Wang XM, Liu ZH, Wang SY, Lu YF (2020) Construction of sandwiched self-powered biosensor based on smart nanostructure and capacitor: toward multiple signal amplification for thrombin detection. Sens Actuators B 304:127418 [DOI: 10.1016/j.snb.2019.127418]
  22. Xue Y, Wang Y, Wang S, Yan MX, Huang JS, Yang XR (2020) Label-free and regenerable aptasensor for real-time detection of cadmium (II) by dual polarization interferometry. Anal Chem 92:10007���10015 [PMID: 32618180]
  23. Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A (2016) Aptamers against pathogenic microorganisms. Crit Rev Microbiol 42:847���865 [PMID: 26258445]
  24. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390 [PMID: 25278614]
  25. Gan XR, Zhao HM, Quan X (2017) Two-dimensional MoS: a promising building block for biosensors. Biosens Bioelectron 89:56���71 [PMID: 27037158]
  26. Su R, Quan YN, Yang S, Hu MY, Yang JH, Gao M (2021) Destroying the symmetric structure to promote phase transition: improving the SERS performance and catalytic activity of MoS nanoflowers. J Alloy Compd 886:161268 [DOI: 10.1016/j.jallcom.2021.161268]
  27. Qu K, Bai YQ, Chen B, Deng M (2020) Unique stabilizing effects of molybdenum disulfide and graphene oxide dual dopants toward polyaniline���s energy storage behavior. Synthetic Met 269:116527���116532 [DOI: 10.1016/j.synthmet.2020.116527]
  28. Villa-Manso AM, Revenga-Parra M, Vera-Hidalgo M, Sulleiro MV, Perez EM, Lorenzo E, Pariente F (2021) 2D MoS nanosheets and hematein complexes deposited on screen-printed graphene electrodes as an efficient electrocatalytic sensor for detecting hydrazine. Sens Actuators B 345:130385 [DOI: 10.1016/j.snb.2021.130385]
  29. Zhang WS, Zhang PP, Su ZQ, Wei G (2015) Synthesis and sensor applications of MoS-based nanocomposites. Nanoscale 7:18364���18378 [PMID: 26503462]
  30. Lin XY, Ni YN, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS-AuNPs modified glassy carbon electrode. Sens Actuators B 233:100���106 [DOI: 10.1016/j.snb.2016.04.019]
  31. Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y (2019) Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine. Colloid Surface B 176:80���86 [DOI: 10.1016/j.colsurfb.2018.12.058]
  32. Ahmad S, Khan I, Husain A, Khan A, Asiri AM (2020) Electrical conductivity based ammonia sensing properties of polypyrrole/MoS nanocomposite. Polymers 12:3047 [PMID: 33353209]
  33. Shuai HL, Huang KJ, Zhang WJ, Cao XY, Jia MP (2017) Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide-gold nanoparticles hybrids coupling with enzyme signal amplification. Sens Actuators B 243:403���411 [DOI: 10.1016/j.snb.2016.12.001]
  34. Dai L, Li YY, Wang YG, Luo XL, Wei D, Feng R, Yan T, Ren X, Du B, Wei Q (2019) A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosens Bioelectron 132:97���104 [PMID: 30856433]
  35. Long NV, Hien TD, Asaka T, Ohtaki M, Nogami M (2011) Synthesis and characterization of Pt-Pd nanoparticles with core-shell morphology: nucleation and overgrowth of the Pd shells on the as-prepared and defined Pt seeds. J Alloys Compd 509:7702���7709 [DOI: 10.1016/j.jallcom.2011.04.031]
  36. Tan ZL, Dong H, Liu Q, Liu H, Zhao PP, Wang P, Li YY, Zhang DP, Zhao ZD, Dong YH (2019) A label-free immunosensor based on PtPd NCs@MoS nanoenzymes for hepatitis B surface antigen detection. Biosens Bioelectron 142:111556 [PMID: 31377574]
  37. Yan QH, Wu RX, Chen HL, Nan WB (2023) An ultrasensitive electrochemical immunosensor for CA72-4 based on a signal amplification strategy of MoS nanoflower-supported Au nanoparticles. J Saudi Chem Soc 27:101612 [DOI: 10.1016/j.jscs.2023.101612]
  38. Chen Y, Ge XY, Cen SY, Wang AJ, Luo X, Feng JJ (2020) Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly (bismarck brown Y) and dendritic AuPt nanoassemblies. Sens Actuators B 311:127931 [DOI: 10.1016/j.snb.2020.127931]
  39. Zhu Y, Zeng GM, Zhang Y, Tang L, Chen J, Cheng M, Zhang LH, He L, Guo Y, He XX, Lai MY, He YB (2014) Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb-induced G-rich DNA conformation. Analyst 139:5014���5020 [PMID: 25105175]
  40. Yang GY, Song CL, Shi QW, Liu HW, Li SY, Liu R, Liu SM, Lv CY (2018) Amplified colorimetric sensor for detecting radon by its daughter lead based on the free-fixed auto-assembly structure of Duplex-hemin/G-quadruplex. J Pharmaceut Biomed Anal 159:459���465 [DOI: 10.1016/j.jpba.2018.07.026]
  41. Chen M, Hassan M, Li HH, Chen QS (2020) Fluorometric determination of lead (II) by using aptamer-functionalized upconversion nanoparticles and magnetite modified gold nanoparticles. Microchim Acta 187:85 [DOI: 10.1007/s00604-019-4030-4]
  42. Zhang BZ, Wei CY (2018) Highly sensitive and selective detection of Pb using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. J Sci Talanta, Int J Pure Appl Anal Chem 182:125���130
  43. Ding JN, Liu Y, Zhang DW, Yu ML, Zhan XJ, Zhang D, Zhou P (2018) An electrochemical aptasensor based on gold@polypyrrole composites for detection of lead ions. Microchim Acta 185:545 [DOI: 10.1007/s00604-018-3068-z]
  44. Wang SQ, Li JR, Fu YQ, Zhuang ZX, Liu ZG (2021) Indium-doped mesoporous BiS-based electrochemical interface for highly sensitive detection of Pb(II). Microchem J 166:106251 [DOI: 10.1016/j.microc.2021.106251]
  45. Zhu XL, Liu BC, Hou HJ, Huang ZY, Zeinu KM, Huang L, Yuan XQ, Guo DB, Hu JP, Yang JK (2017) Alkaline intercalation of TiC MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim Acta 248:46���57 [DOI: 10.1016/j.electacta.2017.07.084]
  46. Zhang ZX, Karimi-Maleh H (2023) In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/TiCTx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324:138302 [PMID: 36871797]

Grants

  1. 22305068/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0aptasensorPbelectrodesignalelectrochemicalAuNPs@MoSresponsePt@Pdbimetallicnanoparticlesleadflower-likenanocompositesusedsurfaceDNAcDNApreparedcore-shellThiAptobtainedThi-Pt@PdNPs-AptDifferentialpulsevoltammetrysensordetectionsignal-amplifiedplatformdesignedconstructlabel-freeionsassayFirstmolybdenumdisulfide-supportedAuNPssynthesizedsubstratesmodifyingmaterialpossessedlargeareasuperiorbiocompatibilitybeneficialimproveloadingamountcomplementaryamplifiedImportantlyPt@PdNPsconjugateredoxmarkerthionineaptameramplificationprobesconnectedassembledhybridizationperformedmonitorincubatingspecificrecognitionresulteddissociationaptamer-cDNAcomplextherebyseparateddecreasedcurrentexhibitedlinearrange50��������10-100nMlimit10��������10 nMachievedapplieddeterminationof PbactualsamplehighsensitivityaccuracydemonstratingpotentialapplicationsheavymetalmonitoringLabel-freeultrasensitiveionbasedAuNPs@MoS2ElectrochemicalModifiedPb2+

Similar Articles

Cited By