Spatial evolution of the proton-coupled Mott transition in correlated oxides for neuromorphic computing.

Xing Deng, Yu-Xiang Liu, Zhen-Zhong Yang, Yi-Feng Zhao, Ya-Ting Xu, Meng-Yao Fu, Yu Shen, Ke Qu, Zhao Guan, Wen-Yi Tong, Yuan-Yuan Zhang, Bin-Bin Chen, Ni Zhong, Ping-Hua Xiang, Chun-Gang Duan
Author Information
  1. Xing Deng: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  2. Yu-Xiang Liu: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  3. Zhen-Zhong Yang: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  4. Yi-Feng Zhao: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  5. Ya-Ting Xu: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
  6. Meng-Yao Fu: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
  7. Yu Shen: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
  8. Ke Qu: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
  9. Zhao Guan: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
  10. Wen-Yi Tong: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  11. Yuan-Yuan Zhang: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  12. Bin-Bin Chen: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  13. Ni Zhong: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  14. Ping-Hua Xiang: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID
  15. Chun-Gang Duan: Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China. ORCID

Abstract

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.

References

  1. Nature. 2016 May 16;534(7606):231-4 [PMID: 27279218]
  2. Science. 2005 Jul 8;309(5732):257-62 [PMID: 16002608]
  3. Adv Mater. 2023 Sep;35(37):e2203352 [PMID: 35723973]
  4. Adv Mater. 2017 Jul;29(25): [PMID: 28582588]
  5. Nature. 2019 Nov;575(7781):147-150 [PMID: 31695211]
  6. Adv Mater. 2023 Jan;35(3):e2207246 [PMID: 36271718]
  7. Small. 2024 May;20(19):e2309467 [PMID: 38100229]
  8. Nat Commun. 2020 Jun 19;11(1):3134 [PMID: 32561717]
  9. Nat Commun. 2018 Feb 26;9(1):818 [PMID: 29483502]
  10. Nature. 2017 Jun 1;546(7656):124-128 [PMID: 28569818]
  11. J Am Chem Soc. 2020 Mar 4;142(9):4136-4140 [PMID: 32081005]
  12. Nano Lett. 2023 Feb 22;23(4):1119-1127 [PMID: 36719402]
  13. Nat Commun. 2016 Oct 11;7:13017 [PMID: 27725665]
  14. Nature. 2023 Mar;615(7950):50-55 [PMID: 36859583]
  15. Adv Mater. 2020 Feb;32(6):e1905060 [PMID: 31854486]
  16. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9515-9520 [PMID: 30185557]
  17. Cell. 2014 Mar 27;157(1):163-86 [PMID: 24679534]
  18. Rep Prog Phys. 2018 Apr;81(4):046501 [PMID: 29266004]
  19. Phys Rev Lett. 2020 Apr 24;124(16):166402 [PMID: 32383925]
  20. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1695-8 [PMID: 3456609]
  21. ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19279-19289 [PMID: 37023114]
  22. Nat Nanotechnol. 2020 Sep;15(9):776-782 [PMID: 32601451]
  23. Phys Rev Lett. 2019 Mar 15;122(10):106403 [PMID: 30932675]
  24. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jun;53(6):6361-6370 [PMID: 9964995]
  25. Nature. 2016 Jan 28;529(7587):484-9 [PMID: 26819042]
  26. Nat Mater. 2012 Jan 24;11(2):103-13 [PMID: 22270825]
  27. Sci Adv. 2019 Mar 15;5(3):eaav6815 [PMID: 30931391]
  28. Nature. 2018 Jan 4;553(7686):68-72 [PMID: 29258293]
  29. Adv Sci (Weinh). 2022 Aug;9(24):e2106124 [PMID: 35686320]
  30. Nat Mater. 2019 Jan;18(1):35-41 [PMID: 30420669]
  31. Proc Natl Acad Sci U S A. 2021 Sep 28;118(39): [PMID: 34531299]
  32. Nat Neurosci. 2021 Aug;24(8):1051-1064 [PMID: 34155400]
  33. Commun Biol. 2022 Aug 25;5(1):873 [PMID: 36008708]
  34. Nat Mater. 2022 Nov;21(11):1246-1251 [PMID: 36175522]
  35. Adv Mater. 2023 Mar;35(10):e2209925 [PMID: 36517930]
  36. Science. 2022 Jul 29;377(6605):539-543 [PMID: 35901152]
  37. Nat Commun. 2021 Aug 16;12(1):4942 [PMID: 34400622]
  38. Nat Commun. 2022 Feb 16;13(1):895 [PMID: 35173170]
  39. Nat Hum Behav. 2022 Aug;6(8):1112-1125 [PMID: 35484209]
  40. Nat Commun. 2014 Sep 03;5:4860 [PMID: 25181992]
  41. Nat Commun. 2020 Jan 10;11(1):184 [PMID: 31924767]
  42. Nat Mater. 2019 Jan;18(1):13-18 [PMID: 30542099]
  43. Nat Commun. 2019 Apr 10;10(1):1651 [PMID: 30971693]
  44. Nat Mater. 2016 Oct;15(10):1113-9 [PMID: 27400385]
  45. Nano Lett. 2021 Jul 28;21(14):6111-6116 [PMID: 34231360]
  46. Nat Rev Neurosci. 2004 Feb;5(2):97-107 [PMID: 14735113]
  47. Nano Lett. 2022 Nov 23;22(22):8983-8990 [PMID: 36331193]
  48. Curr Opin Neurobiol. 2019 Feb;54:134-139 [PMID: 30359930]

Word Cloud

Created with Highcharts 10.0.0devicescorrelatedoxideselectricstatesprotonsMotttransitionprotonneuralevolutionproton-electroncouplingeffectinducesrichspectrumselectronicopeningtemptingopportunitiesexploringnovelmultifunctionsviamodestPt-aidedhydrogenspilloverroomtemperatureamountsintroducedSmNiO-basedsitustructuralcharacterizationstogetherfirst-principlescalculationreveallocalreversiblydrivenmigrationredistributionpredopedaccompanyinggiantresistancechangeresultsexcellentmemristivebehaviorsultralowfieldsHierarchicaltree-likememoryinstinctdisplayedbio-synapsesrealizedspatiallyvaryingconcentrationpulsesshowinggreatpromiseartificialnetworkssolvingintricateproblemsresearchdemonstratesdirecteffectivecontrolusingextremelylowfieldofferingalternativepathwaymodifyingfunctionalitiesconstructinglow-powerconsumptionintelligentnetworkcircuitsSpatialproton-coupledneuromorphiccomputing

Similar Articles

Cited By