The limitless endophytes: their role as antifungal agents against top priority pathogens.

Ashaimaa Y Moussa
Author Information
  1. Ashaimaa Y Moussa: Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt. ashaimaa_yehia@pharma.asu.edu.eg. ORCID

Abstract

Multi resistant fungi are on the rise, and our arsenal compounds are limited to few choices in the market such as polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. Although each of these drugs featured a unique mechanism, antifungal resistant strains did emerge and continued to arise against them worldwide. Moreover, the genetic variation between fungi and their host humans is small, which leads to significant challenges in new antifungal drug discovery. Endophytes are still an underexplored source of bioactive secondary metabolites. Many studies were conducted to isolate and screen endophytic pure compounds with efficacy against resistant yeasts and fungi; especially, Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus, which encouraged writing this review to critically analyze the chemical nature, potency, and fungal source of the isolated endophytic compounds as well as their novelty features and SAR when possible. Herein, we report a comprehensive list of around 320 assayed antifungal compounds against Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus in the period 1980-2024, the majority of which were isolated from fungi of orders Eurotiales and Hypocreales associated with terrestrial plants, probably due to the ease of laboratory cultivation of these strains. 46% of the reviewed compounds were active against C. albicans, 23% against C. neoformans, 29% against A. fumigatus and only 2% against C. auris. Coculturing was proved to be an effective technique to induce cryptic metabolites absent in other axenic cultures or host extract cultures, with Irperide as the most promising compounds MIC value 1 μg/mL. C. auris was susceptible to only persephacin and rubiginosin C. The latter showed potent inhibition against this recalcitrant strain in a non-fungicide way, which unveils the potential of fungal biofilm inhibition. Further development of culturing techniques and activation of silent metabolic pathways would be favorable to inspire the search for novel bioactive antifungals.

Keywords

References

  1. Phytochemistry. 2013 Dec;96:370-7 [PMID: 24189345]
  2. J Nat Prod. 2008 Apr;71(4):615-8 [PMID: 18288805]
  3. Plants (Basel). 2023 Jul 05;12(13): [PMID: 37447114]
  4. Molecules. 2023 Nov 29;28(23): [PMID: 38067579]
  5. J Agric Food Chem. 2018 Feb 7;66(5):1140-1146 [PMID: 29334729]
  6. Molecules. 2022 Apr 22;27(9): [PMID: 35566042]
  7. Microbiology (Reading). 2004 Apr;150(Pt 4):785-793 [PMID: 15073289]
  8. Bioorg Med Chem. 2020 May 15;28(10):115456 [PMID: 32238320]
  9. Appl Microbiol Biotechnol. 2008 Feb;78(2):241-7 [PMID: 18092158]
  10. Phytopathology. 2022 Mar;112(3):481-491 [PMID: 34433293]
  11. Nat Prod Res. 2019 May;33(10):1467-1471 [PMID: 29258357]
  12. Sci Rep. 2018 Jun 27;8(1):9729 [PMID: 29950656]
  13. Curr Opin Microbiol. 2019 Dec;52:158-164 [PMID: 31765991]
  14. Nat Prod Res. 2023 Jul;37(13):2243-2247 [PMID: 35147448]
  15. J Nat Prod. 2000 Oct;63(10):1447-8 [PMID: 11076576]
  16. J Fungi (Basel). 2023 Jul 05;9(7): [PMID: 37504715]
  17. Fitoterapia. 2022 Nov;163:105335 [PMID: 36272702]
  18. J Antibiot (Tokyo). 2014 Feb;67(2):167-70 [PMID: 24192556]
  19. Molecules. 2008 Sep 04;13(9):2114-25 [PMID: 18830144]
  20. Phytochemistry. 2023 Jun;210:113651 [PMID: 36965762]
  21. J Chin Med Assoc. 2018 Jan;81(1):7-11 [PMID: 29042186]
  22. J Biol Chem. 1997 Dec 19;272(51):32709-14 [PMID: 9405490]
  23. Can J Microbiol. 2009 Dec;55(12):1381-91 [PMID: 20029530]
  24. Phytochemistry. 2016 Apr;124:79-85 [PMID: 26743853]
  25. Bioorg Med Chem. 2009 Jan 15;17(2):606-13 [PMID: 19101157]
  26. J Antibiot (Tokyo). 2015 Jul;68(7):436-44 [PMID: 25712396]
  27. Molecules. 2023 Aug 28;28(17): [PMID: 37687129]
  28. Pharm Biol. 2017 Dec;55(1):1528-1535 [PMID: 28398103]
  29. Clin Microbiol Infect. 2003 Jan;9(1):15-32 [PMID: 12691539]
  30. J Nat Prod. 2015 Aug 28;78(8):1809-15 [PMID: 26192387]
  31. Molecules. 2021 Jan 16;26(2): [PMID: 33467200]
  32. Plants (Basel). 2022 Aug 15;11(16): [PMID: 36015430]
  33. Microorganisms. 2013 Dec 13;1(1):175-187 [PMID: 27694771]
  34. Nat Prod Commun. 2016 Oct;11(10):1595-1600 [PMID: 30549627]
  35. Microbiology (Reading). 2014 Apr;160(Pt 4):778-788 [PMID: 24430493]
  36. Bioorg Med Chem Lett. 2016 Oct 15;26(20):4903-4906 [PMID: 27641469]
  37. Microb Pathog. 2016 Nov;100:205-212 [PMID: 27693577]
  38. Infect Drug Resist. 2020 May 05;13:1287-1294 [PMID: 32440165]
  39. Sci Rep. 2017 Oct 10;7(1):12925 [PMID: 29018263]
  40. J Nat Prod. 2023 Aug 25;86(8):1980-1993 [PMID: 37523665]
  41. Nat Prod Res. 2023 Jun 2;:1-8 [PMID: 37267595]
  42. Molecules. 2020 Jan 15;25(2): [PMID: 31952124]
  43. Z Naturforsch C J Biosci. 2018 Nov 27;73(11-12):449-455 [PMID: 30179857]
  44. Mycol Res. 2005 May;109(Pt 5):610-8 [PMID: 16018316]
  45. Microbiol Res. 2020 Feb;232:126386 [PMID: 31816593]
  46. Curr Microbiol. 2011 Apr;62(4):1218-24 [PMID: 21181405]
  47. Nat Rev Microbiol. 2018 Jan;16(1):19-31 [PMID: 29062072]
  48. Nat Prod Commun. 2011 May;6(5):677-8 [PMID: 21615031]
  49. Front Microbiol. 2022 Sep 02;13:922444 [PMID: 36118220]
  50. Org Lett. 2008 Apr 3;10(7):1397-400 [PMID: 18314997]
  51. Front Chem. 2022 Jan 11;9:812564 [PMID: 35087795]
  52. Nat Prod Res. 2013;27(16):1445-9 [PMID: 22950879]
  53. Biomolecules. 2023 Nov 08;13(11): [PMID: 38002314]
  54. Appl Environ Microbiol. 2019 Apr 18;85(9): [PMID: 30824447]
  55. Fitoterapia. 2019 Oct;138:104286 [PMID: 31394164]
  56. J Asian Nat Prod Res. 2018 Jan;20(1):75-85 [PMID: 28446036]
  57. J Fungi (Basel). 2021 Feb 25;7(3): [PMID: 33668824]
  58. J Mycol Med. 2020 Sep;30(3):100987 [PMID: 32499133]
  59. J Biotechnol. 2004 Nov 9;114(3):279-87 [PMID: 15522437]
  60. Molecules. 2022 Jun 11;27(12): [PMID: 35744888]
  61. Arch Pharm Res. 2023 Apr;46(4):273-298 [PMID: 37032397]
  62. Antonie Van Leeuwenhoek. 2015 Aug;108(2):391-402 [PMID: 26036671]
  63. Zhongguo Zhong Yao Za Zhi. 2010 Aug;35(16):2133-7 [PMID: 21046747]
  64. Mar Life Sci Technol. 2021 Jan 4;3(3):363-374 [PMID: 37073292]
  65. J Nat Prod. 2022 Apr 22;85(4):846-856 [PMID: 35175766]
  66. Phytomedicine. 2011 Jul 15;18(10):859-62 [PMID: 21377856]
  67. Phytochemistry. 2018 Apr;148:97-103 [PMID: 29421516]
  68. Int Microbiol. 2001 Jun;4(2):93-102 [PMID: 11770831]
  69. J Fungi (Basel). 2020 Feb 25;6(1): [PMID: 32106450]
  70. Food Chem. 2017 Nov 1;234:62-67 [PMID: 28551268]
  71. Microb Cell. 2020 Mar 12;7(6):146-159 [PMID: 32548177]
  72. Drug Target Insights. 2022 Nov 22;16:25-35 [PMID: 36458152]
  73. Molecules. 2022 Mar 05;27(5): [PMID: 35268806]
  74. Chem Biodivers. 2016 Oct;13(10):1422-1425 [PMID: 27448166]
  75. Antimicrob Agents Chemother. 2012 Feb;56(2):765-9 [PMID: 22106210]
  76. J Appl Microbiol. 2022 Jun;132(6):4150-4169 [PMID: 35157354]
  77. J Nat Prod. 2002 Jun;65(6):916-9 [PMID: 12088438]
  78. J Mycol Med. 2017 Mar;27(1):1-19 [PMID: 27842800]
  79. Bioorg Med Chem. 2018 Feb 1;26(3):786-790 [PMID: 29317147]
  80. J Asian Nat Prod Res. 2018 Mar;20(3):217-226 [PMID: 28581824]
  81. Microbiol Res. 2019 Jan;218:41-48 [PMID: 30454657]
  82. Commun Chem. 2023 Apr 24;6(1):79 [PMID: 37095327]
  83. Phytochemistry. 2004 Sep;65(18):2569-75 [PMID: 15451319]
  84. Nat Prod Res. 2021 Dec;35(24):5653-5664 [PMID: 32954811]
  85. Molecules. 2015 Dec 22;21(1):E14 [PMID: 26703552]
  86. Chem Pharm Bull (Tokyo). 2010 Aug;58(8):1033-6 [PMID: 20686255]
  87. Mar Drugs. 2023 Oct 28;21(11): [PMID: 37999390]
  88. Nat Prod Bioprospect. 2023 Jan 3;13(1):1 [PMID: 36595109]
  89. RSC Adv. 2020 Mar 10;10(17):10197-10220 [PMID: 35498578]
  90. Chin J Nat Med. 2013 Nov;11(6):673-5 [PMID: 24345509]
  91. Syst Appl Microbiol. 2000 Oct;23(3):333-43 [PMID: 11108011]
  92. J Antibiot (Tokyo). 1996 Feb;49(2):216-9 [PMID: 8621365]
  93. Phytochemistry. 2017 Nov;143:115-123 [PMID: 28803995]
  94. Nat Prod Res. 2013;27(19):1722-6 [PMID: 23234367]
  95. Chem Biodivers. 2022 Jan;19(1):e202100608 [PMID: 34786852]
  96. J Fungi (Basel). 2018 Jun 25;4(3): [PMID: 29941838]
  97. Zhongguo Zhong Yao Za Zhi. 2006 Nov;31(21):1759-63 [PMID: 17260785]
  98. Saudi J Biol Sci. 2022 Jan;29(1):287-295 [PMID: 35002421]
  99. Mar Drugs. 2013 Dec 11;11(12):4961-72 [PMID: 24335522]
  100. Molecules. 2023 Feb 10;28(4): [PMID: 36838706]
  101. Phytochemistry. 2022 Nov;203:113391 [PMID: 36007667]
  102. RSC Adv. 2019 Sep 12;9(49):28754-28763 [PMID: 35529647]
  103. Virulence. 2021 Dec;12(1):1063-1075 [PMID: 33843456]
  104. Biochem Biophys Res Commun. 2016 Oct 14;479(2):211-216 [PMID: 27634222]
  105. J Fungi (Basel). 2023 Aug 21;9(8): [PMID: 37623634]
  106. Planta Med. 2011 Oct;77(15):1735-8 [PMID: 21512970]
  107. J Nat Prod. 2020 Oct 23;83(10):2976-2982 [PMID: 32975117]
  108. Phytochemistry. 2010 Jan;71(1):110-6 [PMID: 19913264]

MeSH Term

Antifungal Agents
Endophytes
Humans
Microbial Sensitivity Tests
Cryptococcus neoformans
Fungi
Aspergillus fumigatus
Candida albicans

Chemicals

Antifungal Agents

Word Cloud

Created with Highcharts 10.0.0CcompoundsfungiantifungalaurisresistantalbicansneoformansfumigatusstrainshostEndophytessourcebioactivemetabolitesendophyticCandidaCryptococcusAspergillusfungalisolatedculturesinhibitionbiofilmMultirisearsenallimitedchoicesmarketpolyenespyrimidineanalogsazolesallylaminesechinocandinsAlthoughdrugsfeatureduniquemechanismemergecontinuedariseworldwideMoreovergeneticvariationhumanssmallleadssignificantchallengesnewdrugdiscoverystillunderexploredsecondaryManystudiesconductedisolatescreenpureefficacyyeastsespeciallyencouragedwritingreviewcriticallyanalyzechemicalnaturepotencywellnoveltyfeaturesSARpossibleHereinreportcomprehensivelistaround320assayedperiod1980-2024majorityordersEurotialesHypocrealesassociatedterrestrialplantsprobablydueeaselaboratorycultivation46%reviewedactive23%29%2%CoculturingprovedeffectivetechniqueinducecrypticabsentaxenicextractIrperidepromisingMICvalue1 μg/mLsusceptiblepersephacinrubiginosinlattershowedpotentrecalcitrantstrainnon-fungicidewayunveilspotentialdevelopmentculturingtechniquesactivationsilentmetabolicpathwaysfavorableinspiresearchnovelantifungalslimitlessendophytes:roleagentstopprioritypathogensAntifungalCocultureFungalMulti-resistant

Similar Articles

Cited By

No available data.