Non-additive effects of electrical stimulation of the dorsolateral prefrontal cortex and the vestibular system on muscle sympathetic nerve activity in humans.

Brendan McCarthy, Sudipta Datta, Gianni Sesa-Ashton, Rebecca Wong, Luke A Henderson, Tye Dawood, Vaughan G Macefield
Author Information
  1. Brendan McCarthy: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  2. Sudipta Datta: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  3. Gianni Sesa-Ashton: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  4. Rebecca Wong: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  5. Luke A Henderson: School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
  6. Tye Dawood: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
  7. Vaughan G Macefield: Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. vaughan.macefield@monash.edu. ORCID

Abstract

Sinusoidal galvanic vestibular stimulation (sGVS) induces robust modulation of muscle sympathetic nerve activity (MSNA) alongside perceptions of side-to-side movement, sometimes with an accompanying feeling of nausea. We recently showed that transcranial alternating current stimulation (tACS) of the dorsolateral prefrontal cortex (dlPFC) also modulates MSNA, but does not generate any perceptions. Here, we tested the hypothesis that when the two stimuli are given concurrently, the modulation of MSNA would be additive. MSNA was recorded from 11 awake participants via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve at the fibular head. Sinusoidal stimuli (± 2 mA, 0.08 Hz, 100 cycles) were applied in randomised order as follows: (i) tACS of the dlPFC at electroencephalogram (EEG) site F4 and referenced to the nasion; (ii) bilateral sGVS applied to the vestibular apparatuses via the mastoid processes; and (iii) tACS and sGVS together. Previously obtained data from 12 participants supplemented the data for stimulation protocols (i) and (ii). Cross-correlation analysis revealed that each stimulation protocol caused significant modulation of MSNA (modulation index (paired data): 35.2 ± 19.4% for sGVS; 27.8 ± 15.2% for tACS), but there were no additive effects when tACS and sGVS were delivered concurrently (32.1 ± 18.5%). This implies that the vestibulosympathetic reflexes are attenuated with concurrent dlPFC stimulation. These results suggest that the dlPFC is capable of blocking the processing of vestibular inputs through the brainstem and, hence, the generation of vestibulosympathetic reflexes.

Keywords

References

  1. Hum Brain Mapp. 2019 Jun 15;40(9):2611-2622 [PMID: 30815964]
  2. Front Neurosci. 2014 Oct 09;8:316 [PMID: 25346657]
  3. J Vestib Res. 2011;21(1):49-62 [PMID: 21422542]
  4. Auton Neurosci. 2010 Dec 8;158(1-2):127-31 [PMID: 20675201]
  5. Cereb Cortex. 2024 Jan 14;34(1): [PMID: 37950875]
  6. Front Neuroanat. 2016 Feb 08;10:7 [PMID: 26903817]
  7. Brain Stimul. 2021 Jan-Feb;14(1):154-160 [PMID: 33359603]
  8. Physiol Rev. 1994 Apr;74(2):323-64 [PMID: 8171117]
  9. Exp Brain Res. 2011 Sep;213(4):507-14 [PMID: 21800255]
  10. Neuroimage. 2019 Nov 15;202:116119 [PMID: 31446130]
  11. Exp Physiol. 2013 Sep;98(9):1327-36 [PMID: 23625953]
  12. Exp Brain Res. 2006 May;171(2):251-61 [PMID: 16308690]
  13. Front Neurosci. 2021 Mar 26;15:645936 [PMID: 33841087]
  14. Cereb Cortex Commun. 2022 Apr 14;3(2):tgac017 [PMID: 35559424]
  15. Trends Neurosci. 1998 Jun;21(6):254-9 [PMID: 9641538]
  16. Circulation. 1994 Jul;90(1):248-53 [PMID: 8026005]
  17. Exp Brain Res. 2023 Dec;241(11-12):2845-2853 [PMID: 37902866]
  18. Am J Physiol. 1990 May;258(5 Pt 2):R1271-8 [PMID: 2337202]
  19. Hypertension. 2001 Sep;38(3 Pt 2):549-54 [PMID: 11566929]
  20. Exp Brain Res. 2009 Aug;197(4):379-86 [PMID: 19582437]
  21. Hypertension. 1989 Nov;14(5):511-7 [PMID: 2807512]
  22. Cell Rep. 2021 May 4;35(5):109081 [PMID: 33951427]
  23. Neuroimage. 2013 Apr 15;70:59-65 [PMID: 23287526]
  24. J Comp Neurol. 1993 Jun 1;332(1):89-104 [PMID: 7685782]
  25. Am J Physiol Regul Integr Comp Physiol. 2001 Aug;281(2):R625-34 [PMID: 11448868]
  26. Am J Physiol. 1990 Jan;258(1 Pt 2):R245-55 [PMID: 2301638]
  27. Front Neurol. 2017 Jul 26;8:334 [PMID: 28798718]
  28. Nat Commun. 2019 Jun 12;10(1):2573 [PMID: 31189931]
  29. J Appl Physiol (1985). 2005 Oct;99(4):1523-37 [PMID: 15860687]
  30. Exp Brain Res. 2002 Apr;143(4):463-9 [PMID: 11914792]
  31. Hum Brain Mapp. 2021 Apr 15;42(6):1829-1844 [PMID: 33421255]
  32. Brain Res Bull. 2000 Sep 1;53(1):45-9 [PMID: 11033207]
  33. Cereb Cortex. 2023 Jun 20;33(13):8265-8272 [PMID: 37143172]
  34. PLoS One. 2016 Mar 22;11(3):e0152150 [PMID: 27003840]
  35. Front Neurol. 2012 Jan 06;2:90 [PMID: 22287951]
  36. J Appl Physiol (1985). 2004 Apr;96(4):1262-9 [PMID: 15016790]
  37. Hum Brain Mapp. 2010 Apr;31(4):539-49 [PMID: 19777579]
  38. Compr Physiol. 2023 Jun 26;13(3):4811-4832 [PMID: 37358512]
  39. J Neurosci. 2010 Feb 24;30(8):3022-42 [PMID: 20181599]
  40. Hypertension. 2009 Mar;53(3):571-6 [PMID: 19171792]
  41. Am J Physiol. 1989 Aug;257(2 Pt 2):R265-70 [PMID: 2764151]
  42. Handb Clin Neurol. 2013;117:353-64 [PMID: 24095138]
  43. Exp Brain Res. 2006 Oct;174(4):701-11 [PMID: 16721608]
  44. Brain Cogn. 2003 Feb;51(1):143-54 [PMID: 12633594]
  45. Clin Sci (Lond). 2007 Feb;112(3):157-65 [PMID: 17199559]
  46. Clin Exp Pharmacol Physiol. 2016 Apr;43(4):484-93 [PMID: 26748663]
  47. Compr Physiol. 2014 Apr;4(2):851-87 [PMID: 24715571]
  48. J Neurophysiol. 2016 Dec 1;116(6):2689-2694 [PMID: 27655961]
  49. J Physiol. 2005 Oct 1;568(Pt 1):315-21 [PMID: 16037092]

MeSH Term

Humans
Male
Adult
Female
Young Adult
Vestibule, Labyrinth
Sympathetic Nervous System
Muscle, Skeletal
Dorsolateral Prefrontal Cortex
Transcranial Direct Current Stimulation
Electroencephalography
Prefrontal Cortex
Electric Stimulation

Word Cloud

Created with Highcharts 10.0.0stimulationsGVSMSNAtACSvestibularmodulationnervedlPFCsympatheticactivityprefrontalcortexdataSinusoidalmuscleperceptionsdorsolateralstimuliconcurrentlyadditiveparticipantsviaappliediieffectsvestibulosympatheticreflexeselectricalsystemgalvanicinducesrobustalongsideside-to-sidemovementsometimesaccompanyingfeelingnausearecentlyshowedtranscranialalternatingcurrentalsomodulatesgeneratetestedhypothesistwogivenrecorded11awaketungstenmicroelectrodeinsertedpercutaneouslyrightcommonperonealfibularhead±2 mA008 Hz100cyclesrandomisedorderfollows:electroencephalogramEEGsiteF4referencednasionbilateralapparatusesmastoidprocessesiiitogetherPreviouslyobtained12supplementedprotocolsCross-correlationanalysisrevealedprotocolcausedsignificantindexpaired:352 ± 194%278 ± 152%delivered321 ± 185%impliesattenuatedconcurrentresultssuggestcapableblockingprocessinginputsbrainstemhencegenerationNon-additivehumansDorsolateralMuscleRostralventrolateralmedullaTranscranialVestibular

Similar Articles

Cited By