Genomic and taxonomic evaluation of 38 Treponema prophage sequences.

Rachel Ridgway, Hanshuo Lu, Tim R Blower, Nicholas James Evans, Stuart Ainsworth
Author Information
  1. Rachel Ridgway: Department of Infection Biology and Microbiomes, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK. rmridgway83@gmail.com.
  2. Hanshuo Lu: Department of Infection Biology and Microbiomes, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK.
  3. Tim R Blower: Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
  4. Nicholas James Evans: Department of Infection Biology and Microbiomes, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK.
  5. Stuart Ainsworth: Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.

Abstract

BACKGROUND: Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage.
RESULTS: We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes.
CONCLUSIONS: In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.

Keywords

References

  1. Nature. 2021 Dec;600(7887):116-120 [PMID: 34853457]
  2. Viruses. 2021 Mar 18;13(3): [PMID: 33803862]
  3. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  4. Microorganisms. 2021 Dec 10;9(12): [PMID: 34946160]
  5. Int J Syst Bacteriol. 1997 Jan;47(1):175-81 [PMID: 9019153]
  6. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4160-5 [PMID: 19251647]
  7. J Microbiol Methods. 2016 Nov;130:38-47 [PMID: 27485708]
  8. J Bacteriol. 2006 Apr;188(8):3037-51 [PMID: 16585764]
  9. Infect Immun. 2002 Aug;70(8):3985-93 [PMID: 12117903]
  10. Front Oral Health. 2023 Mar 03;4:1095858 [PMID: 36937503]
  11. J Dairy Sci. 2018 Nov;101(11):10317-10326 [PMID: 30219415]
  12. Appl Environ Microbiol. 2006 May;72(5):3154-60 [PMID: 16672452]
  13. J Infect Dis. 2003 Feb 15;187(4):613-24 [PMID: 12599078]
  14. Microbiol Mol Biol Rev. 2003 Jun;67(2):238-76, table of contents [PMID: 12794192]
  15. Vet Microbiol. 2008 Jul 27;130(1-2):141-50 [PMID: 18243592]
  16. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  17. Microbiology (Reading). 2010 Mar;156(Pt 3):774-788 [PMID: 20007650]
  18. J Bacteriol. 2020 Apr 9;202(9): [PMID: 32071093]
  19. Microb Pathog. 2019 Jul;132:87-99 [PMID: 31029716]
  20. Microbiome. 2023 Apr 21;11(1):84 [PMID: 37085924]
  21. NAR Genom Bioinform. 2021 Aug 05;3(3):lqab067 [PMID: 34377978]
  22. BMC Bioinformatics. 2007 Jun 18;8:209 [PMID: 17577412]
  23. Microbiol Mol Biol Rev. 2011 Sep;75(3):423-33, first page of table of contents [PMID: 21885679]
  24. PLoS One. 2010 Jun 25;5(6):e11147 [PMID: 20593022]
  25. Nat Biotechnol. 2021 May;39(5):578-585 [PMID: 33349699]
  26. Appl Environ Microbiol. 2010 Jan;76(2):589-95 [PMID: 19948862]
  27. Nucleic Acids Res. 2020 Jan 8;48(D1):D517-D525 [PMID: 31665441]
  28. Nat Commun. 2020 Jun 4;11(1):2816 [PMID: 32499527]
  29. Brief Bioinform. 2003 Jun;4(2):124-32 [PMID: 12846394]
  30. Adv Virus Res. 2012;82:339-49 [PMID: 22420857]
  31. Cell Host Microbe. 2019 Feb 13;25(2):219-232 [PMID: 30763536]
  32. ISME J. 2016 Nov;10(11):2744-2754 [PMID: 27015004]
  33. Viruses. 2023 Apr 19;15(4): [PMID: 37112988]
  34. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36453861]
  35. Appl Environ Microbiol. 1995 Dec;61(12):4348-56 [PMID: 8534101]
  36. Rev Can Biol. 1974 Mar;33(1):67-70 [PMID: 4857846]
  37. Bioinformatics. 2019 Nov 1;35(22):4537-4542 [PMID: 31329826]
  38. Nucleic Acids Res. 2022 Jul 5;50(W1):W541-W550 [PMID: 35639517]
  39. Microbiology (Reading). 2013 Jun;159(Pt 6):1023-1035 [PMID: 23579685]
  40. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 [PMID: 27899622]
  41. Front Microbiol. 2022 Dec 16;13:1032186 [PMID: 36590402]
  42. Viruses. 2020 Nov 06;12(11): [PMID: 33172115]
  43. Bioinformatics. 2017 Aug 01;33(15):2379-2380 [PMID: 28379287]
  44. Trends Biotechnol. 2023 May;41(5):669-685 [PMID: 36117025]
  45. Nucleic Acids Res. 2023 Jul 5;51(W1):W443-W450 [PMID: 37194694]
  46. Vet Rec. 1978 Jul 8;103(2):34-5 [PMID: 685100]
  47. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D325-8 [PMID: 15608208]
  48. FEMS Microbiol Lett. 2016 Apr;363(7): [PMID: 26925588]
  49. Viruses. 2022 Feb 08;14(2): [PMID: 35215934]
  50. Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17 [PMID: 33095870]
  51. FEMS Microbiol Rev. 2022 Feb 9;46(1): [PMID: 34558600]
  52. Plasmid. 2001 Mar;45(2):122-6 [PMID: 11322826]
  53. Antimicrob Agents Chemother. 2015 Dec 07;60(2):968-81 [PMID: 26643348]
  54. J Virol. 2010 Feb;84(3):1276-88 [PMID: 19939932]
  55. PLoS Pathog. 2021 Mar 29;17(3):e1009464 [PMID: 33780514]
  56. Virulence. 2013 Jul 1;4(5):354-65 [PMID: 23611873]
  57. Nat Rev Microbiol. 2016 Dec;14(12):744-759 [PMID: 27721440]
  58. Bioinformatics. 2017 Nov 01;33(21):3396-3404 [PMID: 29036289]
  59. Phage (New Rochelle). 2021 Dec 1;2(4):214-223 [PMID: 36159887]
  60. Nucleic Acids Res. 2004 Jan 02;32(1):11-6 [PMID: 14704338]
  61. Appl Environ Microbiol. 2012 Feb;78(3):744-51 [PMID: 22113912]
  62. Evolution. 2017 Aug;71(8):2080-2089 [PMID: 28590013]
  63. Front Microbiol. 2022 Aug 02;13:951030 [PMID: 35983328]
  64. Sci Rep. 2023 Mar 17;13(1):4410 [PMID: 36932119]
  65. Nat Biotechnol. 2023 Sep 21;: [PMID: 37735266]
  66. Mol Microbiol. 2003 Jul;49(2):277-300 [PMID: 12886937]
  67. Bioinformatics. 2021 Aug 25;37(16):2473-2475 [PMID: 33459763]
  68. J Appl Microbiol. 2006 Oct;101(4):948-55 [PMID: 16968306]
  69. Nucleic Acids Res. 2021 Sep 20;49(16):9077-9096 [PMID: 34417604]
  70. Can J Microbiol. 1979 Jan;25(1):114-6 [PMID: 427652]
  71. Genome Biol. 2016 Jun 20;17(1):132 [PMID: 27323842]
  72. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2192-7 [PMID: 10051617]
  73. Bacteriophage. 2011 Jan;1(1):31-45 [PMID: 21687533]
  74. Curr Opin Virol. 2022 Apr;53:101208 [PMID: 35180534]
  75. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]

MeSH Term

Prophages
Phylogeny
Treponema
Genomics
Genome, Bacterial
Computational Biology
Genome, Viral
Bacteriophages

Word Cloud

Created with Highcharts 10.0.0prophageTreponemasequencesgenomesprophagesbacteriophages24putative38analysisbioinformaticidentifyregionsbacteriophagetreponemeGenomicBACKGROUND:DespiteSpirochetalesubiquitousmedicallyimportantorderbacteriainfectinghumansanimalsextremelylimitedinformationregardinggenusjustsinglereportedcharacterisedRESULTS:appliedapproachpreviouslypublishedcharacterisetreponemalThirteencontaindetectableremainingelevencontainedoneeightbacterialgenomeranged124751kb27171proteincodingPhylogeneticrevealedformedthreedistinctsequenceclustersidentifyingmyoviralsiphoviralmorphologyViPTreedemonstratedidentifiednovelcomparedknowndoublestrandedDNACONCLUSIONS:studystartedaddressknowledgegapcharacterisingUsingapproachesablecompareprophage-likeelementsrespectgenecontentpotentialfunctionalinducibleturncanhelpfocusattentionspecificinvestigatefurthertaxonomicevaluationphagesBacteriophagesBioinformaticsComparativegenomicsProphages

Similar Articles

Cited By