The ncRNA-mediated regulatory networks of and in : involvement in response to gut bacterial disturbances.

Yipeng Ren, Siying Fu, Wenhao Dong, Juhong Chen, Huaijun Xue, Wenjun Bu
Author Information
  1. Yipeng Ren: Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.
  2. Siying Fu: Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.
  3. Wenhao Dong: Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
  4. Juhong Chen: Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.
  5. Huaijun Xue: Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.
  6. Wenjun Bu: Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China.

Abstract

Insects depend on humoral immunity against intruders through the secretion of antimicrobial peptides (AMPs) and immune effectors via NF-��B transcription factors, and their fitness is improved by gut bacterial microbiota. Although there are growing numbers of reports on noncoding RNAs (ncRNAs) involving in immune responses against pathogens, comprehensive studies of ncRNA-AMP regulatory networks in , which is one of the widely distributed pests in East Asia, are still not well understood under feeding environmental changes. The objective of this study employed the whole-transcriptome sequencing (WTS) to systematically identify the lncRNAs (long noncoding RNA) and circRNAs (circular RNA) and to obtain their differential expression from the gut under different feeding conditions. Functional annotation indicated that they were mainly enriched in various biological processes with the GO and KEGG databases, especially in immune signaling pathways. Five (four novel members) and eleven (nine novel members) family genes were identified and characterized from WTS data, and meanwhile, phylogenetic analysis confirmed their classification. Subsequently, the miRNA-mRNA interaction network of above two AMPs and lncRNA-involved ceRNA (competing endogenous RNA) regulatory network of one were predicted and built based on bioinformatic prediction and calculation, and the expression patterns of differentially expressed (DE) , and DE and related DE ncRNAs were estimated and selected among all the comparison groups. Finally, to integrate the analyses of WTS and previous 16S rRNA amplicon sequencing, we conducted the Pearson correlation analysis to reveal the significantly positive or negative correlation between above DE AMPs and ncRNAs, as well as most changes in the gut bacterial microbiota at the genus level of . Taken together, the present observations provide great insights into the ncRNA regulatory networks of AMPs in response to rearing environmental changes in insects and uncover new potential strategies for pest control in the future.

Keywords

References

  1. Annu Rev Entomol. 2020 Jan 7;65:145-170 [PMID: 31594411]
  2. Pest Manag Sci. 2023 Oct;79(10):3529-3537 [PMID: 37198147]
  3. J Immunol. 2022 Apr 15;208(8):1978-1988 [PMID: 35379744]
  4. New Phytol. 2023 Mar;237(5):1876-1890 [PMID: 36404128]
  5. Arch Insect Biochem Physiol. 2023 Oct;114(2):1-16 [PMID: 37533191]
  6. Genome Biol. 2015 Jan 13;16:4 [PMID: 25583365]
  7. Front Physiol. 2023 Jan 04;13:1071987 [PMID: 36685208]
  8. Fish Shellfish Immunol. 2022 Nov;130:132-140 [PMID: 36084889]
  9. Genomics Proteomics Bioinformatics. 2017 Jun;15(3):177-186 [PMID: 28529100]
  10. Front Immunol. 2020 Sep 02;11:2030 [PMID: 32983149]
  11. Appl Environ Microbiol. 2007 Jul;73(13):4308-16 [PMID: 17483286]
  12. Front Microbiol. 2022 May 31;13:913113 [PMID: 35711769]
  13. Dev Comp Immunol. 2023 May;142:104654 [PMID: 36738950]
  14. Int J Mol Sci. 2021 Sep 18;22(18): [PMID: 34576280]
  15. Environ Pollut. 2019 May;248:989-999 [PMID: 31091643]
  16. Nat Rev Genet. 2016 Jan;17(1):47-62 [PMID: 26666209]
  17. Insects. 2021 Mar 05;12(3): [PMID: 33807991]
  18. RNA Biol. 2018 Feb 1;15(2):292-301 [PMID: 29268657]
  19. Virus Res. 2022 Jan 15;308:198627 [PMID: 34785275]
  20. J Immunol. 2014 Apr 15;192(8):3455-62 [PMID: 24706930]
  21. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  22. Ecol Evol. 2020 Jul 16;10(16):8755-8769 [PMID: 32884655]
  23. Bioinformatics. 2004 Dec 12;20(18):3710-5 [PMID: 15297299]
  24. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  25. C R Biol. 2004 Jun;327(6):539-49 [PMID: 15330253]
  26. Fish Shellfish Immunol. 2023 Mar;134:108623 [PMID: 36809843]
  27. PLoS One. 2016 Nov 2;11(11):e0165865 [PMID: 27806111]
  28. Chemosphere. 2018 Jun;200:295-301 [PMID: 29494910]
  29. J Biol Chem. 2015 Aug 21;290(34):21042-21053 [PMID: 26116716]
  30. Elife. 2018 Nov 20;7: [PMID: 30454554]
  31. J Invertebr Pathol. 2020 Feb;170:107323 [PMID: 31926972]
  32. PLoS Negl Trop Dis. 2016 Oct 19;10(10):e0005069 [PMID: 27760142]
  33. Proc Biol Sci. 2019 Feb 27;286(1897):20182207 [PMID: 30963836]
  34. Dev Comp Immunol. 2022 Feb;127:104304 [PMID: 34756931]
  35. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  36. Front Immunol. 2022 Jun 02;13:905899 [PMID: 35720331]
  37. Dev Comp Immunol. 2021 Nov;124:104183 [PMID: 34174242]
  38. Front Microbiol. 2022 Jan 05;12:796548 [PMID: 35069496]
  39. Dev Comp Immunol. 2016 May;58:102-18 [PMID: 26695127]
  40. Dev Comp Immunol. 2017 Feb;67:427-433 [PMID: 27555079]
  41. Insect Mol Biol. 2023 Apr;32(2):160-172 [PMID: 36482511]
  42. FEBS Lett. 2017 Jan;591(1):213-220 [PMID: 27878987]
  43. Nat Rev Microbiol. 2021 Jan;19(1):55-71 [PMID: 32887946]
  44. J Invertebr Pathol. 2021 Feb;179:107537 [PMID: 33472087]
  45. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  46. Comp Biochem Physiol Part D Genomics Proteomics. 2023 Dec;48:101135 [PMID: 37688974]
  47. Nature. 2013 Mar 21;495(7441):333-8 [PMID: 23446348]
  48. Fish Shellfish Immunol. 2015 Oct;46(2):334-45 [PMID: 26102458]
  49. Front Microbiol. 2020 Sep 29;11:588009 [PMID: 33117326]
  50. Microorganisms. 2021 Feb 23;9(2): [PMID: 33672230]
  51. Environ Pollut. 2021 Nov 15;289:117866 [PMID: 34343750]
  52. Dev Comp Immunol. 2016 Aug;61:60-9 [PMID: 26997372]
  53. PLoS One. 2013 May 14;8(5):e64557 [PMID: 23691247]
  54. Appl Microbiol Biotechnol. 2014 Jul;98(13):5807-22 [PMID: 24811407]
  55. Nucleic Acids Res. 2021 Jul 2;49(W1):W216-W227 [PMID: 33849055]
  56. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  57. Cell. 2018 Jan 25;172(3):393-407 [PMID: 29373828]
  58. Sci Rep. 2017 Nov 16;7(1):15713 [PMID: 29146985]
  59. Nucleic Acids Res. 2023 Jan 6;51(D1):D418-D427 [PMID: 36350672]
  60. Cell. 2014 Mar 27;157(1):77-94 [PMID: 24679528]
  61. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  62. Nature. 2013 Mar 21;495(7441):384-8 [PMID: 23446346]
  63. Cell. 2013 Mar 14;152(6):1298-307 [PMID: 23498938]
  64. Integr Comp Biol. 2003 Apr;43(2):300-4 [PMID: 21680437]
  65. Int J Mol Sci. 2023 Mar 17;24(6): [PMID: 36982826]
  66. Res Microbiol. 2017 Apr;168(3):175-187 [PMID: 27965151]
  67. J Immunol. 2022 Nov 15;209(10):1817-1825 [PMID: 36426939]
  68. Front Genet. 2015 Jan 26;6:2 [PMID: 25674102]
  69. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  70. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160599]
  71. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  72. Biochem Biophys Res Commun. 2016 Feb 19;470(4):955-60 [PMID: 26802465]
  73. Arch Insect Biochem Physiol. 2021 Mar;106(3):1-12 [PMID: 33619747]
  74. Nature. 2011 Aug 28;477(7364):295-300 [PMID: 21874018]
  75. Dev Comp Immunol. 2023 Jan;138:104530 [PMID: 36084754]
  76. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3852-6 [PMID: 1069269]
  77. Mol Ecol Resour. 2021 Oct;21(7):2423-2436 [PMID: 34038033]
  78. Nucleic Acids Res. 2022 Jul 5;50(W1):W420-W426 [PMID: 35580044]

Word Cloud

Created with Highcharts 10.0.0gutAMPsbacterialregulatoryDEimmunemicrobiotanoncodingncRNAsnetworkschangesWTSRNAantimicrobialpeptidesRNAsonewellfeedingenvironmentalsequencingexpressionnovelmembersanalysisnetworkcorrelationresponsepestcontrolInsectsdependhumoralimmunityintruderssecretioneffectorsviaNF-��BtranscriptionfactorsfitnessimprovedAlthoughgrowingnumbersreportsinvolvingresponsespathogenscomprehensivestudiesncRNA-AMPwidelydistributedpestsEastAsiastillunderstoodobjectivestudyemployedwhole-transcriptomesystematicallyidentifylncRNAslongcircRNAscircularobtaindifferentialdifferentconditionsFunctionalannotationindicatedmainlyenrichedvariousbiologicalprocessesGOKEGGdatabasesespeciallysignalingpathwaysFivefourelevenninefamilygenesidentifiedcharacterizeddatameanwhilephylogeneticconfirmedclassificationSubsequentlymiRNA-mRNAinteractiontwolncRNA-involvedceRNAcompetingendogenouspredictedbuiltbasedbioinformaticpredictioncalculationpatternsdifferentiallyexpressedrelatedestimatedselectedamongcomparisongroupsFinallyintegrateanalysesprevious16SrRNAampliconconductedPearsonrevealsignificantlypositivenegativegenuslevelTakentogetherpresentobservationsprovidegreatinsightsncRNArearinginsectsuncovernewpotentialstrategiesfuturencRNA-mediated:involvementdisturbancesRiptortuspedestris

Similar Articles

Cited By

No available data.