CELF2 Deficiency Demonstrates Autism-Like Behaviors and Interferes with Late Development of Cortical Neurons in Mice.

Xinyu Duan, Xiaoxia Peng, Xiangbin Jia, Senwei Tan, Hui Guo, Jieqiong Tan, Zhangxue Hu
Author Information
  1. Xinyu Duan: Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, 400010, China.
  2. Xiaoxia Peng: Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
  3. Xiangbin Jia: Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
  4. Senwei Tan: Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
  5. Hui Guo: Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
  6. Jieqiong Tan: Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China. tanjieqiong@sklmg.edu.cn. ORCID
  7. Zhangxue Hu: Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing, 400010, China. huzx1@163.com.

Abstract

CELF2 variants have been linked to neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). However, the molecular mechanisms remain unclear. We generated Celf2 Nestin-Cre knockout mice.Our findings revealed that Celf2 Nestin-Cre heterozygous knockout mice exhibited social impairment and anxiety, an autism-like behavior, though no manifestations of repetitive stereotyped behavior, learning cognitive impairment, or depression were observed. Immunofluorescence assay showed an underdeveloped cerebral cortex with significantly reduced cortical thickness, albeit without abnormal cell density. Further in vitro neuronal culture demonstrated a significant reduction in dendritic spine density and affected synaptic maturation in Celf2 deficient mice, with no notable abnormalities in total neurite and axon length. RNA-seq and RIP-seq analysis of the cerebral cortex revealed differentially expressed genes post Celf2 gene knockout compared with the control group. Enrichment analysis highlighted significant enrichment in dendrite and synapse-related biological processes and pathways. Our study delineated the behavioral and neurodevelopmental phenotypes of Celf2, suggesting its potential involvement in autism through the regulation of target genes associated with dendritic spines and synapse development. Further research is needed to elucidate the specific mechanisms involved.

Keywords

References

  1. American Psychiatric Association, DSM-5 Task Force (2013) Diagnostic and statistical manual of mental disorders: DSM-5��� (5th edn.). American Psychiatric Publishing, Inc. https://doi.org/10.1176/appi.books.9780890425596
  2. Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 14(11):1109���1120. https://doi.org/10.1016/S1474-4422(15)00044-7 [DOI: 10.1016/S1474-4422(15)00044-7]
  3. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311(17):1770���1777. https://doi.org/10.1001/jama.2014.4144 [DOI: 10.1001/jama.2014.4144]
  4. Guo H, Duyzend MH, Coe BP, Baker C, Hoekzema K, Gerdts J, Turner TN et al (2019) Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genet Med 21(7):1611���1620. https://doi.org/10.1038/s41436-018-0380-2 [DOI: 10.1038/s41436-018-0380-2]
  5. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L et al (2013) Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 155(5):997���1007. https://doi.org/10.1016/j.cell.2013.10.020 [DOI: 10.1016/j.cell.2013.10.020]
  6. Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH (2015) The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol 10:111���144. https://doi.org/10.1146/annurev-pathol-012414-040405 [DOI: 10.1146/annurev-pathol-012414-040405]
  7. Walsh CA, Morrow EM, Rubenstein JL (2008) Autism and brain development. Cell 135(3):396���400. https://doi.org/10.1016/j.cell.2008.10.015 [DOI: 10.1016/j.cell.2008.10.015]
  8. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285���293. https://doi.org/10.1038/nn.2741 [DOI: 10.1038/nn.2741]
  9. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551���563. https://doi.org/10.1038/nrn3992 [DOI: 10.1038/nrn3992]
  10. RK CY, Merico D, Bookman M, J LH, Thiruvahindrapuram B, Patel RV, Whitney J et al (2017) Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 20 (4):602-611. https://doi.org/10.1038/nn.4524
  11. Howrigan DP, Rose SA, Samocha KE, Fromer M, Cerrato F, Chen WJ, Churchhouse C, Chambert K et al (2020) Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat Neurosci 23(2):185���193. https://doi.org/10.1038/s41593-019-0564-3 [DOI: 10.1038/s41593-019-0564-3]
  12. Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, Gallone G, Lelieveld SH et al (2020) Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586(7831):757���762. https://doi.org/10.1038/s41586-020-2832-5 [DOI: 10.1038/s41586-020-2832-5]
  13. Itai T, Hamanaka K, Sasaki K, Wagner M, Kotzaeridou U, Br��sse I, Ries M, Kobayashi Y et al (2021) De novo variants in CELF2 that disrupt the nuclear localization signal cause developmental and epileptic encephalopathy. Hum Mutat 42(1):66���76. https://doi.org/10.1002/humu.24130 [DOI: 10.1002/humu.24130]
  14. MacPherson MJ, Erickson SL, Kopp D, Wen P, Aghanoori MR, Kedia S, Burns KML, Vitobello A et al (2021) Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates. Cell Rep 35(10):109226. https://doi.org/10.1016/j.celrep.2021.109226 [DOI: 10.1016/j.celrep.2021.109226]
  15. Dasgupta T, Ladd AN (2012) The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA 3(1):104���121. https://doi.org/10.1002/wrna.107 [DOI: 10.1002/wrna.107]
  16. Barreau C, Paillard L, M��reau A, Osborne HB (2006) Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 88(5):515���525. https://doi.org/10.1016/j.biochi.2005.10.011 [DOI: 10.1016/j.biochi.2005.10.011]
  17. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, Shuga J, Liu SJ et al (2015) Molecular identity of human outer radial glia during cortical development. Cell 163(1):55���67. https://doi.org/10.1016/j.cell.2015.09.004 [DOI: 10.1016/j.cell.2015.09.004]
  18. Kwan KY, Sestan N, Anton ES (2012) Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139(9):1535���1546. https://doi.org/10.1242/dev.069963 [DOI: 10.1242/dev.069963]
  19. Gilbert J, Man HY (2017) Fundamental elements in autism: from neurogenesis and neurite growth to synaptic plasticity. Front Cell Neurosci 11:359. https://doi.org/10.3389/fncel.2017.00359 [DOI: 10.3389/fncel.2017.00359]
  20. Mila M, Alvarez-Mora MI, Madrigal I, Rodriguez-Revenga L (2018) Fragile X syndrome: an overview and update of the FMR1 gene. Clin Genet 93(2):197���205. https://doi.org/10.1111/cge.13075 [DOI: 10.1111/cge.13075]
  21. Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Schnekenberg RP, Suminaite D, Hope J et al (2012) Recessive mutations in SPTBN2 implicate beta-III spectrin in both cognitive and motor development. PLoS Genet 8(12):e1003074. https://doi.org/10.1371/journal.pgen.1003074 [DOI: 10.1371/journal.pgen.1003074]
  22. Saitsu H, Tohyama J, Kumada T, Egawa K, Hamada K, Okada I, Mizuguchi T, Osaka H et al (2010) Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet 86(6):881���891. https://doi.org/10.1016/j.ajhg.2010.04.013 [DOI: 10.1016/j.ajhg.2010.04.013]
  23. Chen L, Liu Z, Zhou B, Wei C, Zhou Y, Rosenfeld MG, Fu XD, Chisholm AD et al (2016) CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. Elife 5. https://doi.org/10.7554/eLife.16072

Grants

  1. 2021YFA0805200/Key Technologies Research and Development Program
  2. 2021ZD0201701/National Brain Science and Brain-like Research of China

MeSH Term

Animals
Mice, Knockout
CELF Proteins
Neurons
Cerebral Cortex
Autistic Disorder
Behavior, Animal
Dendritic Spines
Mice
Mice, Inbred C57BL
Synapses
Male

Chemicals

CELF Proteins

Word Cloud

Created with Highcharts 10.0.0Celf2knockoutmiceCELF2neurodevelopmentaldisordersautismspectrumdisordermechanismsNestin-CrerevealedimpairmentbehaviorcerebralcortexdensitysignificantdendriticRNA-seqanalysisgenesvariantslinkedNDDincludingASDHowevermolecularremainuncleargeneratedOurfindingsheterozygousexhibitedsocialanxietyautism-likethoughmanifestationsrepetitivestereotypedlearningcognitivedepressionobservedImmunofluorescenceassayshowedunderdevelopedsignificantlyreducedcorticalthicknessalbeitwithoutabnormalcellvitroneuronalculturedemonstratedreductionspineaffectedsynapticmaturationdeficientnotableabnormalitiestotalneuriteaxonlengthRIP-seqdifferentiallyexpressedpostgenecomparedcontrolgroupEnrichmenthighlightedenrichmentdendritesynapse-relatedbiologicalprocessespathwaysstudydelineatedbehavioralphenotypessuggestingpotentialinvolvementregulationtargetassociatedspinessynapsedevelopmentresearchneededelucidatespecificinvolvedDeficiencyDemonstratesAutism-LikeBehaviorsInterferesLateDevelopmentCorticalNeuronsMiceAutismNeurodevelopmental

Similar Articles

Cited By