The importance of DNA sequence for nucleosome positioning in transcriptional regulation.

Malte Sahrhage, Niels Benjamin Paul, Tim Beißbarth, Martin Haubrock
Author Information
  1. Malte Sahrhage: Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany malte.sahrhage@bioinf.med.uni-goettingen.de. ORCID
  2. Niels Benjamin Paul: Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany. ORCID
  3. Tim Beißbarth: Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany. ORCID
  4. Martin Haubrock: Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany martin.haubrock@bioinf.med.uni-goettingen.de. ORCID

Abstract

Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.

References

  1. PLoS Comput Biol. 2013;9(8):e1003118 [PMID: 23950696]
  2. Gene. 2005 Jun 6;352:57-62 [PMID: 15862762]
  3. Trends Biochem Sci. 2014 Sep;39(9):381-99 [PMID: 25129887]
  4. Nucleic Acids Res. 2020 Jan 8;48(D1):D174-D179 [PMID: 31617559]
  5. Biophys J. 2017 Feb 7;112(3):505-511 [PMID: 28131316]
  6. Bioinformatics. 2018 May 15;34(10):1705-1712 [PMID: 29329398]
  7. Epigenetics Chromatin. 2014 Nov 20;7(1):33 [PMID: 25473421]
  8. Curr Opin Struct Biol. 2009 Feb;19(1):65-71 [PMID: 19208466]
  9. BMC Bioinformatics. 2010 Jun 24;11:346 [PMID: 20576140]
  10. Brief Bioinform. 2016 Sep;17(5):745-57 [PMID: 26411474]
  11. Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65 [PMID: 23385723]
  12. Nat Struct Mol Biol. 2022 Dec;29(12):1178-1187 [PMID: 36471057]
  13. BMC Bioinformatics. 2021 Jun 2;22(Suppl 6):129 [PMID: 34078256]
  14. Elife. 2019 Oct 10;8: [PMID: 31599722]
  15. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  16. BMC Bioinformatics. 2018 Nov 20;19(Suppl 14):418 [PMID: 30453896]
  17. Genes Dev. 2014 Dec 1;28(23):2663-76 [PMID: 25452276]
  18. Nat Commun. 2020 Aug 18;11(1):4136 [PMID: 32811816]
  19. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  20. Genome Biol. 2021 Aug 26;22(1):250 [PMID: 34446075]
  21. Bioinformatics. 2009 Jul 15;25(14):1841-2 [PMID: 19468054]
  22. Mol Cell. 2014 Jun 5;54(5):844-857 [PMID: 24813947]
  23. Brief Bioinform. 2014 Nov;15(6):1014-27 [PMID: 24023366]
  24. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W56-62 [PMID: 23703209]
  25. Nature. 2009 Oct 29;461(7268):1248-53 [PMID: 19865164]
  26. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 [PMID: 14681465]
  27. Genome Biol. 2016 Feb 27;17:36 [PMID: 26922637]
  28. Cell Res. 2011 Mar;21(3):381-95 [PMID: 21321607]
  29. Nat Rev Mol Cell Biol. 2017 Sep;18(9):548-562 [PMID: 28537572]
  30. Bioinformatics. 2014 Jun 1;30(11):1522-9 [PMID: 24504871]
  31. Cold Spring Harb Perspect Med. 2016 May 02;6(5): [PMID: 27141080]
  32. Nature. 2018 Oct;562(7725):76-81 [PMID: 30250250]
  33. Nat Cell Biol. 2022 May;24(5):737-747 [PMID: 35484250]
  34. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  35. Nat Genet. 2010 Apr;42(4):343-7 [PMID: 20208536]
  36. Nature. 2012 Apr 11;485(7398):381-5 [PMID: 22495304]
  37. Bioinformatics. 2005 Oct 15;21(20):3940-1 [PMID: 16096348]
  38. Genome Res. 2009 Oct;19(10):1732-41 [PMID: 19687145]
  39. Nucleic Acids Res. 2019 May 7;47(8):e47 [PMID: 30783653]
  40. BMC Genomics. 2013 Dec 23;14:912 [PMID: 24365105]
  41. Cell. 2007 May 18;129(4):823-37 [PMID: 17512414]
  42. BMC Bioinformatics. 2020 Sep 16;21(Suppl 8):326 [PMID: 32938377]
  43. Nat Struct Mol Biol. 2009 Aug;16(8):847-52 [PMID: 19620965]
  44. Bioinformatics. 2015 Jul 15;31(14):2382-3 [PMID: 25765347]
  45. Nat Rev Genet. 2019 Apr;20(4):207-220 [PMID: 30675018]
  46. Nat Methods. 2012 Feb 28;9(3):215-6 [PMID: 22373907]
  47. Nucleic Acids Res. 2019 Dec 2;47(21):11181-11196 [PMID: 31665434]
  48. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  49. Nature. 2010 Jul 15;466(7304):388-92 [PMID: 20512117]
  50. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  51. Nature. 2012 Apr 11;485(7398):376-80 [PMID: 22495300]
  52. Genes Dev. 2011 Nov 1;25(21):2227-41 [PMID: 22056668]
  53. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  54. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  55. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  56. Nat Commun. 2021 May 28;12(1):3232 [PMID: 34050140]
  57. Genome Res. 2021 Feb;31(2):317-326 [PMID: 33355297]
  58. PLoS One. 2010 Feb 09;5(2):e9129 [PMID: 20161746]
  59. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  60. Nat Rev Genet. 2009 Mar;10(3):161-72 [PMID: 19204718]
  61. Nucleic Acids Res. 2009 Aug;37(14):4707-22 [PMID: 19509309]
  62. Bioinformatics. 2016 Apr 15;32(8):1211-3 [PMID: 26668005]
  63. BMC Genomics. 2022 Apr 13;23(Suppl 1):301 [PMID: 35418074]
  64. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  65. Chromosoma. 2022 Jun;131(1-2):19-28 [PMID: 35061087]
  66. Genome Res. 2010 Jan;20(1):110-21 [PMID: 19858363]
  67. Science. 1974 May 24;184(4139):868-71 [PMID: 4825889]
  68. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]
  69. Trends Genet. 2010 Nov;26(11):476-83 [PMID: 20832136]
  70. Cell Syst. 2019 Jan 23;8(1):27-42.e6 [PMID: 30660610]
  71. Cell. 2008 Jan 25;132(2):311-22 [PMID: 18243105]

MeSH Term

Nucleosomes
Humans
Chromatin Assembly and Disassembly
Transcription, Genetic
DNA
Gene Expression Regulation
Chromatin
Genome, Human
Base Sequence

Chemicals

Nucleosomes
DNA
Chromatin

Word Cloud

Created with Highcharts 10.0.0positioningDNAtranscriptionsequencenucleosomeschromatinnucleosometranscriptionalregulationimportancecontrastremodelingroleelementsNucleosomekeyfactorNucleosomesregulatedynamicaccessibilityinteractmachineryeverystageInfluencessteerdiverseaccordingactivesubjectlongdiscussionstudyevaluatefunctionalmajoralongprocessdevelopedrandomforestclassifierbasedlocalstructureassessessequence-intrinsicsupportbasiscreatedsimpledataresourceappliedgenome-widehumangenomecomprehensiveanalysisfoundspecialmediatingcompetitioncis-regulatoryenablingsteadystableexonsrepellingterminationrelatefindingsconcurrentprocessesgeneratestronglypositionedvivomediatedenergy-dependent

Similar Articles

Cited By