Current and future scenarios of suitability and expansion of cassava brown streak disease, species complex, and cassava planting in Africa.

Geofrey Sikazwe, Rosita Endah Epse Yocgo, Pietro Landi, David M Richardson, Cang Hui
Author Information
  1. Geofrey Sikazwe: African Institute for Mathematical Sciences, Kigali, Rwanda.
  2. Rosita Endah Epse Yocgo: African Institute for Mathematical Sciences, Kigali, Rwanda.
  3. Pietro Landi: Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South Africa.
  4. David M Richardson: Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic.
  5. Cang Hui: Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South Africa.

Abstract

Cassava () is among the most important staple crops globally, with an imperative role in supporting the Sustainable Development Goal of 'Zero hunger'. In sub-Saharan Africa, it is cultivated mainly by millions of subsistence farmers who depend directly on it for their socio-economic welfare. However, its yield in some regions has been threatened by several diseases, especially the cassava brown streak disease (CBSD). Changes in climatic conditions enhance the risk of the disease spreading to other planting regions. Here, we characterise the current and future distribution of cassava, CBSD and whitefly species complex in Africa, using an ensemble of four species distribution models (SDMs): boosted regression trees, maximum entropy, generalised additive model, and multivariate adaptive regression splines, together with 28 environmental covariates. We collected 1,422 and 1,169 occurrence records for cassava and species complex from the Global Biodiversity Information Facility and 750 CBSD occurrence records from published literature and systematic surveys in East Africa. Our results identified isothermality as having the highest contribution to the current distribution of cassava, while elevation was the top predictor of the current distribution of species complex. Cassava harvested area and precipitation of the driest month contributed the most to explain the current distribution of CBSD outbreaks. The geographic distributions of these target species are also expected to shift under climate projection scenarios for two mid-century periods (2041-2060 and 2061-2080). Our results indicate that major cassava producers, like Cameron, Ivory Coast, Ghana, and Nigeria, are at greater risk of invasion of CBSD. These results highlight the need for firmer agricultural management and climate-change mitigation actions in Africa to combat new outbreaks and to contain the spread of CBSD.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.9745118

References

  1. PLoS One. 2018 Jun 14;13(6):e0198925 [PMID: 29902221]
  2. Sci Rep. 2020 Dec 16;10(1):22049 [PMID: 33328547]
  3. Virus Res. 2017 Sep 15;241:236-253 [PMID: 28487059]
  4. Korean J Anesthesiol. 2022 Feb;75(1):25-36 [PMID: 35124947]
  5. Sci Data. 2019 Dec 18;6(1):327 [PMID: 31852893]
  6. R Soc Open Sci. 2017 Dec 6;4(12):170721 [PMID: 29308222]
  7. PLoS One. 2020 May 7;15(5):e0232616 [PMID: 32379806]
  8. Ecol Evol. 2012 Nov;2(11):2749-62 [PMID: 23170210]
  9. Bull Entomol Res. 2018 Oct;108(5):565-582 [PMID: 29433589]
  10. PeerJ. 2021 Oct 26;9:e12311 [PMID: 34754618]
  11. Insects. 2022 Sep 19;13(9): [PMID: 36135550]
  12. Mol Plant Pathol. 2018 May;19(5):1282-1294 [PMID: 28887856]
  13. J Phytopathol (1986). 2017 Dec;165(11-12):707-717 [PMID: 29213187]
  14. Front Plant Sci. 2019 May 10;10:567 [PMID: 31134114]
  15. J Gen Virol. 2010 May;91(Pt 5):1365-72 [PMID: 20071490]
  16. Virus Res. 2011 Aug;159(2):161-70 [PMID: 21549776]
  17. PLoS One. 2018 Sep 11;13(9):e0202403 [PMID: 30204749]
  18. PLoS One. 2020 Jun 29;15(6):e0229881 [PMID: 32598391]
  19. Phytopathology. 2015 May;105(5):646-55 [PMID: 25585059]
  20. Mol Ecol Resour. 2022 Jul;22(5):1706-1724 [PMID: 34918473]
  21. Insects. 2021 Mar 20;12(3): [PMID: 33804645]
  22. Sci Data. 2020 May 27;7(1):159 [PMID: 32461559]
  23. Phytopathology. 2021 Nov;111(11):1952-1962 [PMID: 33856231]
  24. PLoS Comput Biol. 2020 Mar 16;16(3):e1007724 [PMID: 32176681]
  25. Adv Virus Res. 2014;90:147-206 [PMID: 25410102]
  26. Plant Dis. 2007 Jan;91(1):24-29 [PMID: 30781061]
  27. J R Soc Interface. 2020 Sep;17(170):20200229 [PMID: 32900300]
  28. Sci Data. 2018 Oct 30;5:180214 [PMID: 30375988]
  29. Adv Virus Res. 2006;67:355-418 [PMID: 17027685]
  30. Plant Mol Biol. 2004 Nov;56(4):481-501 [PMID: 15669146]

MeSH Term

Manihot
Animals
Hemiptera
Plant Diseases
Africa
Crops, Agricultural

Word Cloud

Created with Highcharts 10.0.0cassavaCBSDspeciesAfricadistributionCassavadiseasecurrentcomplexbrownstreakresultsregionsriskplantingfutureregression1occurrencerecordsoutbreaksscenariosamongimportantstaplecropsgloballyimperativerolesupportingSustainableDevelopmentGoal'Zerohunger'sub-Saharancultivatedmainlymillionssubsistencefarmersdependdirectlysocio-economicwelfareHoweveryieldthreatenedseveraldiseasesespeciallyChangesclimaticconditionsenhancespreadingcharacterisewhiteflyusingensemblefourmodelsSDMs:boostedtreesmaximumentropygeneralisedadditivemodelmultivariateadaptivesplinestogether28environmentalcovariatescollected422169GlobalBiodiversityInformationFacility750publishedliteraturesystematicsurveysEastidentifiedisothermalityhighestcontributionelevationtoppredictorharvestedareaprecipitationdriestmonthcontributedexplaingeographicdistributionstargetalsoexpectedshiftclimateprojectiontwomid-centuryperiods2041-20602061-2080indicatemajorproducerslikeCameronIvoryCoastGhanaNigeriagreaterinvasionhighlightneedfirmeragriculturalmanagementclimate-changemitigationactionscombatnewcontainspreadCurrentsuitabilityexpansionBemisiatabaciClimatechangeFoodsecurityZerohunger

Similar Articles

Cited By