Ocular working memory signals are flexible to behavioral priority and subjective imagery strength.

Yueying Dong, Anastasia Kiyonaga
Author Information
  1. Yueying Dong: Department of Cognitive Science, University of California, San Diego, California, United States. ORCID
  2. Anastasia Kiyonaga: Department of Cognitive Science, University of California, San Diego, California, United States. ORCID

Abstract

The pupillary light response was long considered a brainstem reflex, outside of cognitive influence. However, newer findings indicate that pupil dilation (and eye movements) can reflect content held "in mind" with working memory (WM). These findings may reshape understanding of ocular and WM mechanisms, but it is unclear whether the signals are artifactual or functional to WM. Here, we ask whether peripheral and oculomotor WM signals are sensitive to the task-relevance or "attentional state" of WM content. During eye-tracking, human participants saw both dark and bright WM stimuli, then were retroactively cued to the item that would most likely be tested. Critically, we manipulated the attentional priority among items by varying the cue reliability across blocks. We confirmed previous findings that remembering darker items is associated with larger pupils (vs. brighter), and that gaze is biased toward cued item locations. Moreover, we discovered that pupil and eye movement responses were influenced differently by WM item relevance. Feature-specific pupillary effects emerged only for highly prioritized WM items but were eliminated when cues were less reliable, and pupil effects also increased with self-reported visual imagery strength. Conversely, gaze position consistently veered toward the cued item location, regardless of cue reliability. However, biased microsaccades occurred at a higher frequency when cues were more reliable, though only during a limited post-cue time window. Therefore, peripheral sensorimotor processing is sensitive to the task-relevance or functional state of internal WM content, but pupillary and eye movement WM signals show distinct profiles. These results highlight a potential role for early visual processing in maintaining multiple WM content dimensions. Here, we found that working memory (WM)-driven ocular inflections-feature-specific pupillary and saccadic biases-were muted for memory items that were less behaviorally relevant. This work illustrates that functionally informative goal signals may extend as early as the sensorimotor periphery, that pupil size may be under more fine-grained control than originally thought, and that ocular signals carry multiple dimensions of cognitively relevant information.

Keywords

References

  1. Trends Neurosci. 2022 Aug;45(8):635-647 [PMID: 35662511]
  2. Cortex. 2019 Mar;112:134-148 [PMID: 30639088]
  3. Trends Cogn Sci. 2011 Jul;15(7):327-34 [PMID: 21665518]
  4. J Neurosci Methods. 2007 May 15;162(1-2):8-13 [PMID: 17254636]
  5. J Neurosci. 2024 Jul 10;44(28): [PMID: 38769009]
  6. Nat Hum Behav. 2019 May;3(5):462-470 [PMID: 31089296]
  7. Int J Psychophysiol. 2008 Feb;67(2):124-30 [PMID: 18067982]
  8. Front Neurol. 2019 Jan 22;9:1190 [PMID: 30723454]
  9. Hum Brain Mapp. 2024 Feb 15;45(3):e26590 [PMID: 38401134]
  10. Nature. 2022 Oct;610(7930):128-134 [PMID: 36171291]
  11. Nat Commun. 2017 Apr 27;8:15041 [PMID: 28447609]
  12. Trends Cogn Sci. 2015 Jan;19(1):1-3 [PMID: 25467128]
  13. Behav Res Methods. 2023 Sep;55(6):3055-3077 [PMID: 36028608]
  14. Trends Cogn Sci. 2021 Mar;25(3):228-239 [PMID: 33397602]
  15. J Neurosci. 2018 Aug 8;38(32):7020-7028 [PMID: 30089641]
  16. Elife. 2022 Mar 31;11: [PMID: 35356890]
  17. Nat Rev Neurosci. 2005 Feb;6(2):97-107 [PMID: 15654324]
  18. J Cogn Neurosci. 2011 Jul;23(7):1587-96 [PMID: 20666595]
  19. Science. 1992 Jan 31;255(5044):556-9 [PMID: 1736359]
  20. Nat Commun. 2017 Mar 03;8:14637 [PMID: 28256514]
  21. Curr Biol. 2021 Jun 21;31(12):R779-R780 [PMID: 34157258]
  22. Trends Cogn Sci. 2020 Jun;24(6):466-480 [PMID: 32331857]
  23. Ann N Y Acad Sci. 2018 Jul;1424(1):256-267 [PMID: 29604084]
  24. Psychon Bull Rev. 2018 Dec;25(6):2005-2015 [PMID: 29435963]
  25. eNeuro. 2024 Jan 22;11(1): [PMID: 38176905]
  26. Curr Top Behav Neurosci. 2019;41:255-278 [PMID: 31037554]
  27. J Exp Psychol Hum Percept Perform. 2020 Oct 22;: [PMID: 33090834]
  28. Trends Cogn Sci. 2017 Feb;21(2):111-124 [PMID: 28063661]
  29. Comput Intell Neurosci. 2011;2011:156869 [PMID: 21253357]
  30. Front Neurosci. 2011 Sep 30;5:115 [PMID: 21994487]
  31. Annu Rev Psychol. 2015 Jan 3;66:115-42 [PMID: 25251486]
  32. Science. 1966 Dec 23;154(3756):1583-5 [PMID: 5924930]
  33. Eur J Neurosci. 2019 Sep;50(5):2893-2904 [PMID: 30803079]
  34. Trends Cogn Sci. 2021 Apr;25(4):284-293 [PMID: 33551266]
  35. Cortex. 2018 May;102:57-66 [PMID: 29079341]
  36. Cortex. 2022 Jan;146:186-199 [PMID: 34894605]
  37. Curr Dir Psychol Sci. 2015 Oct;24(5):374-378 [PMID: 26494950]
  38. Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22802-22810 [PMID: 31636213]
  39. Psychon Bull Rev. 2013 Apr;20(2):228-42 [PMID: 23233157]
  40. Nat Rev Neurosci. 2019 Oct;20(10):624-634 [PMID: 31384033]
  41. PLoS One. 2021 Dec 17;16(12):e0261463 [PMID: 34919586]
  42. Atten Percept Psychophys. 2016 Oct;78(7):1839-60 [PMID: 27098647]
  43. Cortex. 2021 Feb;135:159-172 [PMID: 33383478]
  44. Neuron. 2019 Oct 9;104(1):132-146 [PMID: 31600510]
  45. Nat Commun. 2022 Jun 17;13(1):3503 [PMID: 35715471]
  46. Front Integr Neurosci. 2014 Aug 22;8:66 [PMID: 25202241]
  47. Behav Res Methods. 2024 Mar;56(3):1376-1412 [PMID: 37351785]
  48. Science. 1971 Aug 13;173(3997):652-4 [PMID: 4998337]
  49. J Neurophysiol. 1989 Feb;61(2):331-49 [PMID: 2918358]
  50. J Neurosci. 2018 Aug 8;38(32):7013-7019 [PMID: 30089640]
  51. J Vis. 2013 May 17;13(6): [PMID: 23685391]
  52. J Neurophysiol. 2014 Dec 15;112(12):3046-52 [PMID: 25231615]
  53. Behav Res Methods. 2020 Oct;52(5):1991-2007 [PMID: 32144729]
  54. Behav Res Methods. 2018 Feb;50(1):94-106 [PMID: 29330763]
  55. Cortex. 2015 Dec;73:378-80 [PMID: 26115582]
  56. Front Hum Neurosci. 2015 Aug 04;9:435 [PMID: 26300759]
  57. J Cogn. 2018 Feb 21;1(1):16 [PMID: 31517190]
  58. Trends Neurosci. 2017 Jun;40(6):328-346 [PMID: 28515011]
  59. Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2309431120 [PMID: 37603752]
  60. Trends Cogn Sci. 2003 Sep;7(9):415-423 [PMID: 12963473]
  61. Hum Brain Mapp. 2014 Aug;35(8):4140-54 [PMID: 24510607]
  62. Vision Res. 2013 Jun 7;85:45-57 [PMID: 23164746]
  63. Trends Cogn Sci. 2012 Feb;16(2):129-35 [PMID: 22209601]
  64. Vision Res. 2003 Apr;43(9):1035-45 [PMID: 12676246]
  65. Psychon Bull Rev. 2015 Oct;22(5):1334-41 [PMID: 25563713]
  66. Wiley Interdiscip Rev Cogn Sci. 2014 Nov;5(6):679-692 [PMID: 26308873]
  67. Nature. 1960 Sep 24;187:1121-3 [PMID: 13690234]
  68. Psychon Bull Rev. 2012 Aug;19(4):639-46 [PMID: 22528872]
  69. J Neurosci. 2013 Oct 9;33(41):16394-408 [PMID: 24107969]
  70. J Exp Psychol Hum Percept Perform. 2019 Nov;45(11):1522-1528 [PMID: 31436453]
  71. J Cogn Neurosci. 2022 Nov 1;34(12):2360-2374 [PMID: 36122353]
  72. Q J Exp Psychol (Hove). 2006 Jan;59(1):100-20 [PMID: 16556561]
  73. Vision Res. 2002 Oct;42(22):2533-45 [PMID: 12445847]
  74. Behav Res Methods. 2019 Jun;51(3):1336-1342 [PMID: 29992408]
  75. Curr Opin Neurobiol. 2015 Aug;33:134-40 [PMID: 25863645]
  76. J Neurosci. 2016 Mar 30;36(13):3765-76 [PMID: 27030761]
  77. Psychon Bull Rev. 2019 Apr;26(2):641-646 [PMID: 30276638]
  78. J Neurosci. 2017 May 10;37(19):5008-5018 [PMID: 28432136]
  79. Nat Hum Behav. 2017;1: [PMID: 29034334]
  80. Cortex. 2021 Oct;143:237-253 [PMID: 34482017]
  81. J Neurophysiol. 2004 Jan;91(1):152-62 [PMID: 13679398]
  82. Nat Neurosci. 2017 Jun;20(6):864-871 [PMID: 28414333]
  83. Trends Cogn Sci. 2018 Mar;22(3):190-192 [PMID: 29475635]
  84. PLoS Biol. 2021 Oct 21;19(10):e3001436 [PMID: 34673775]
  85. Br J Psychol. 1973 Feb;64(1):17-24 [PMID: 4742442]
  86. Nat Rev Neurosci. 2004 Mar;5(3):229-40 [PMID: 14976522]
  87. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2220552120 [PMID: 37155892]
  88. Behav Res Methods. 2019 Apr;51(2):865-878 [PMID: 30264368]
  89. Atten Percept Psychophys. 2017 Apr;79(3):782-795 [PMID: 28083772]
  90. Trends Cogn Sci. 2017 Jun;21(6):449-461 [PMID: 28454719]
  91. Trends Cogn Sci. 2017 Oct;21(10):794-815 [PMID: 28774684]

Grants

  1. FA9550-22-1-0230/DOD | Air Force Office of Scientific Research (AFOSR)

MeSH Term

Humans
Memory, Short-Term
Female
Male
Adult
Pupil
Young Adult
Attention
Imagination
Cues
Eye Movements
Eye-Tracking Technology
Visual Perception

Word Cloud

Created with Highcharts 10.0.0WMsignalsmemoryvisualpupillarypupileyecontentworkingitemitemsfindingsmayocularcuedimageryHowevermovementswhetherfunctionalperipheralsensitivetask-relevanceprioritycuereliabilitygazebiasedtowardmovementeffectscueslessreliablestrengthsensorimotorprocessingearlymultipledimensionsrelevantlightresponselongconsideredbrainstemreflexoutsidecognitiveinfluencenewerindicatedilationcanreflectheld"inmind"reshapeunderstandingmechanismsunclearartifactualaskoculomotor"attentionalstate"eye-trackinghumanparticipantssawdarkbrightstimuliretroactivelylikelytestedCriticallymanipulatedattentionalamongvaryingacrossblocksconfirmedpreviousrememberingdarkerassociatedlargerpupilsvsbrighterlocationsMoreoverdiscoveredresponsesinfluenceddifferentlyrelevanceFeature-specificemergedhighlyprioritizedeliminatedalsoincreasedself-reportedConverselypositionconsistentlyveeredlocationregardlessmicrosaccadesoccurredhigherfrequencythoughlimitedpost-cuetimewindowThereforestateinternalshowdistinctprofilesresultshighlightpotentialrolemaintainingfound-driveninflections-feature-specificsaccadicbiases-weremutedbehaviorallyworkillustratesfunctionallyinformativegoalextendperipherysizefine-grainedcontroloriginallythoughtcarrycognitivelyinformationOcularflexiblebehavioralsubjectivepupillometryattention

Similar Articles

Cited By