Cathelicidin-HG Alleviates Sepsis-Induced Platelet Dysfunction by Inhibiting GPVI-Mediated Platelet Activation.

Weichen Xiong, Jinwei Chai, Jiena Wu, Jiali Li, Wancheng Lu, Maolin Tian, Mohamed Amine Jmel, Johannes H Ippel, Michail Kotsyfakis, Ingrid Dijkgraaf, Shuwen Liu, Xueqing Xu
Author Information
  1. Weichen Xiong: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  2. Jinwei Chai: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  3. Jiena Wu: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  4. Jiali Li: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  5. Wancheng Lu: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  6. Maolin Tian: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  7. Mohamed Amine Jmel: Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic.
  8. Johannes H Ippel: Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, Netherlands.
  9. Michail Kotsyfakis: Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic.
  10. Ingrid Dijkgraaf: Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, Netherlands.
  11. Shuwen Liu: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
  12. Xueqing Xu: NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. ORCID

Abstract

Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.

References

  1. J Thromb Haemost. 2009 Jun;7(6):1030-2 [PMID: 19548910]
  2. Chest. 2012 Mar;141(3):833-834 [PMID: 22396579]
  3. Front Pharmacol. 2021 Aug 16;12:731056 [PMID: 34483941]
  4. J Med Chem. 2018 Dec 13;61(23):10709-10723 [PMID: 30427189]
  5. Int J Mol Sci. 2022 Mar 12;23(6): [PMID: 35328486]
  6. Vaccines (Basel). 2022 Jul 10;10(7): [PMID: 35891269]
  7. Nat Commun. 2022 Aug 6;13(1):4583 [PMID: 35933512]
  8. Infect Immun. 2017 Nov 17;85(12): [PMID: 28947644]
  9. Am J Respir Crit Care Med. 2016 Feb 1;193(3):259-72 [PMID: 26414292]
  10. Zool Res. 2019 Mar 18;40(2):94-101 [PMID: 30127328]
  11. Blood. 2006 May 15;107(10):3902-6 [PMID: 16455953]
  12. Immunity. 2021 Nov 9;54(11):2450-2464 [PMID: 34758337]
  13. Research (Wash D C). 2023 Apr 24;6:0124 [PMID: 37223472]
  14. Cell Mol Life Sci. 2019 Sep;76(18):3525-3542 [PMID: 31101936]
  15. Amino Acids. 2012 Aug;43(2):677-85 [PMID: 22009138]
  16. Blood. 2018 Feb 22;131(8):864-876 [PMID: 29187378]
  17. Blood. 2023 Oct 26;142(17):1463-1477 [PMID: 37441848]
  18. Research (Wash D C). 2022 Sep 26;2022:9767643 [PMID: 36258843]
  19. Peptides. 2006 Dec;27(12):3077-84 [PMID: 16979798]
  20. Crit Care. 2020 Jun 29;24(1):380 [PMID: 32600436]
  21. Viruses. 2021 Nov 28;13(12): [PMID: 34960651]
  22. J Biochem Mol Toxicol. 2019 Apr;33(4):e22279 [PMID: 30537341]
  23. Nat Biotechnol. 2022 Jul;40(7):1023-1025 [PMID: 34980915]
  24. Thromb Res. 2018 Jun;166:28-36 [PMID: 29655000]
  25. Med Res Rev. 2020 Mar;40(2):753-810 [PMID: 31599007]
  26. Br J Pharmacol. 2017 Jun;174(12):1620-1632 [PMID: 27435156]
  27. Inflammation. 2017 Oct;40(5):1553-1565 [PMID: 28567497]
  28. J Leukoc Biol. 2004 Jan;75(1):39-48 [PMID: 12960280]
  29. Antimicrob Agents Chemother. 2018 Aug 27;62(9): [PMID: 29967025]
  30. PLoS One. 2014 Mar 27;9(3):e93216 [PMID: 24675879]
  31. Crit Care Med. 2012 Feb;40(2):538-43 [PMID: 21926582]
  32. Nat Commun. 2017 Dec 21;8(1):2239 [PMID: 29269852]
  33. Front Pharmacol. 2021 Dec 09;12:788358 [PMID: 34955858]
  34. Dev Comp Immunol. 2021 Mar;116:103928 [PMID: 33242568]
  35. Amino Acids. 2017 Sep;49(9):1571-1585 [PMID: 28593346]
  36. Research (Wash D C). 2023 Nov 30;6:0276 [PMID: 38034083]
  37. Sci Rep. 2018 Jan 17;8(1):943 [PMID: 29343843]
  38. J Intensive Care. 2019 May 20;7:32 [PMID: 31139417]
  39. Cell Mol Life Sci. 2022 Apr 13;79(5):240 [PMID: 35416530]
  40. Elife. 2021 Apr 20;10: [PMID: 33875135]
  41. Blood. 2014 Dec 11;124(25):3781-90 [PMID: 25301709]
  42. Chem Rev. 2015 Feb 25;115(4):1760-846 [PMID: 25594509]
  43. Front Immunol. 2020 Aug 07;11:1962 [PMID: 32849656]
  44. Bioinformatics. 2014 Jun 15;30(12):1771-3 [PMID: 24532726]
  45. Oxid Med Cell Longev. 2022 Sep 5;2022:2615178 [PMID: 36105482]
  46. Nat Protoc. 2009;4(1):31-6 [PMID: 19131954]
  47. ACS Omega. 2021 Feb 24;6(9):6414-6423 [PMID: 33718732]
  48. J Thromb Haemost. 2016 Mar;14(3):438-48 [PMID: 26749406]
  49. Thromb Haemost. 2019 Nov;119(11):1720-1739 [PMID: 31564053]
  50. Genet Mol Res. 2016 Aug 05;15(3): [PMID: 27525920]
  51. PLoS One. 2016 Mar 10;11(3):e0151088 [PMID: 26963510]
  52. Blood. 2021 Jun 3;137(22):3105-3115 [PMID: 33827131]
  53. Braz J Infect Dis. 2020 Nov - Dec;24(6):552-560 [PMID: 33169675]
  54. Biochem J. 2018 Sep 11;475(17):2785-2799 [PMID: 30045878]
  55. J Thromb Haemost. 2019 Nov;17(11):1989-1994 [PMID: 31410983]
  56. Research (Wash D C). 2023 Oct 05;6:0236 [PMID: 37808178]
  57. Life Sci. 2020 Nov 1;260:118407 [PMID: 32931796]
  58. Toxins (Basel). 2018 Oct 13;10(10): [PMID: 30322120]

Word Cloud

Created with Highcharts 10.0.0Cath-HGsepsisGPVIPlateletmicrothrombosisorganplatelettargetactivationinflammationresultsCathelicidinidentifiednovelstructuremicein vivodamageaggregationthrombocytopeniacontributesdevelopmentleadingincreaseddisseminatedintravascularcoagulationmultipledysfunctionAlthoughcanalleviateroleregulationremainslargelyunexploredstudyskinanalyzedusingnuclearmagneticresonancespectroscopymodulatoryeffectsymptomsinducedcecalligationpunctureevaluatedcountdegreemeasuredantiplateletactivitystudiedin vitroverifiedFinallyinvestigatedwhetherregulatethrombosisFeClinjury-inducedcarotidarterymodelshowedexhibitedα-helicalsodiumdodecylsulfatesolutioneffectivelyreducedimprovingsurvivalsepticalleviatedsepsis-inducedIn vitrospecificallyinhibitedcollagen-inducedmodulatedglycoproteinVIsignalingpathwaysDotblottingenzyme-linkedimmunosorbentassaypull-downexperimentsconfirmedMoleculardockingaminoacidresiduetruncations/mutationscrucialsitesfindingssuggestrepresentspromisingtherapeuticmayservepotentialtreatmentsepsis-relatedthromboticeventsAdditionallyidentifyinginhibitorprovidesinsightsdevelopingantithrombotictherapiestargetingmediatedCathelicidin-HGAlleviatesSepsis-InducedDysfunctionInhibitingGPVI-MediatedActivation

Similar Articles

Cited By