Background: Breast cancer is a major global cancer, for which radiation and chemotherapy are the main treatments. Natural remedies are being studied to reduce the side effects. Etoposide (ETO), a chemo-drug, and quercetin (QC), a phytochemical, are considered potential factors for adaptation to conventional treatments.
Objectives: The anticancer effect of the synergy between ETO and Quercetin-loaded solid lipid nanoparticles (QC-SLNs), was investigated in MDA-MB-231 cells.
Methods: We developed QC-SLNs for efficient cellular delivery, characterizing their morphology, particle size, and zeta potential. We assessed the cytotoxicity of QC-SLNs and ETO on breast cancer cells via the MTT assay. Effects on apoptosis intensity in MDA-MB-231 cells have been detected utilizing annexin V-FITC, PI, and caspase activities. Real-time PCR assessed Bax gene and Bcl-2 gene fold change expression, while Western blot analysis determined p53 and p21 protein levels.
Results: Spherical, negatively charged QC-SLNs, when combined with ETO, significantly enhanced inhibition of MDA-MB-231 cell proliferation compared to ETO or QC-SLNs alone. The combined treatment also notably increased the apoptosis pathway. QC-SLNs + ETO increased the Bax/Bcl-2 gene ratio, elevated p53 and p21 proteins, and activated caspase 3 and 9 enzymes. These results indicate the potential for QC-SLNs + ETO as a strategy for breast cancer treatment, potentially overcoming ETO-resistant breast cancer chemoresistance.
Conclusion: These results suggest that QC-SLN has the potential to have a substantial impact on the breast cancer cure by improving the efficacy of ETO. This enhancement could potentially help overcome chemoresistance observed in ETO-resistant breast cancer.
Mol Nutr Food Res. 2015 Feb;59(2):250-61
[PMID:
25380086]
Biochem Biophys Res Commun. 2023 Jul 5;664:69-76
[PMID:
37141640]
AAPS PharmSciTech. 2017 Apr;18(3):875-883
[PMID:
27368922]
Biomed Pharmacother. 2022 Jun;150:113054
[PMID:
35658225]
Crit Rev Food Sci Nutr. 2017 Jun 13;57(9):1863-1873
[PMID:
26192708]
Mol Biol Rep. 2020 Jul;47(7):4957-4967
[PMID:
32638319]
Ann Oncol. 2012 Sep;23(9):2223-2234
[PMID:
22517820]
Sci Rep. 2019 Jul 31;9(1):11134
[PMID:
31366901]
Bratisl Lek Listy. 2017;118(2):123-128
[PMID:
28814095]
Iran J Basic Med Sci. 2021 Sep;24(9):1211-1219
[PMID:
35083008]
Mol Med Rep. 2012 Jun;5(6):1453-6
[PMID:
22447039]
Foods. 2020 Mar 23;9(3):
[PMID:
32210182]
Curr Opin Cell Biol. 2003 Dec;15(6):691-9
[PMID:
14644193]
J Food Drug Anal. 2017 Apr;25(2):219-234
[PMID:
28911663]
Gynecol Oncol. 1999 Feb;72(2):131-7
[PMID:
10021290]
Anticancer Res. 2009 Apr;29(4):1411-5
[PMID:
19414395]
Mol Cell Biochem. 2013 Nov;383(1-2):39-48
[PMID:
23846485]
Cancer Nanotechnol. 2012;3(1-6):25-36
[PMID:
26069494]
J Nanobiotechnology. 2018 Sep 19;16(1):71
[PMID:
30231877]
Int J Nanomedicine. 2011;6:151-66
[PMID:
21499415]
Cancer. 1991 Jul 15;68(2):227-32
[PMID:
1712661]
Cell Death Differ. 2002 Dec;9(12):1287-93
[PMID:
12478465]
Medicina (Kaunas). 2019 Apr 22;55(4):
[PMID:
31013662]
J Invest Dermatol. 2001 Aug;117(2):333-40
[PMID:
11511312]
Naunyn Schmiedebergs Arch Pharmacol. 2023 Dec;396(12):3443-3458
[PMID:
37490121]
Pol J Pathol. 2002;53(3):133-7
[PMID:
12476615]
Cancers (Basel). 2020 Aug 26;12(9):
[PMID:
32859058]
Mol Cancer. 2015 Feb 21;14:48
[PMID:
25743109]
Iran J Basic Med Sci. 2015 Jul;18(7):635-43
[PMID:
26351552]
Eur J Med Chem. 2023 Nov 5;259:115676
[PMID:
37499287]
Arch Pharm Res. 2010 Aug;33(8):1181-91
[PMID:
20803121]
J Invest Dermatol. 2002 Jun;118(6):923-32
[PMID:
12060385]
Cancer Drug Resist. 2019;2:141-160
[PMID:
34322663]
Biomed Pharmacother. 2023 Sep;165:115170
[PMID:
37481930]
J Clin Oncol. 1992 Jul;10(7):1074-7
[PMID:
1318951]
ACS Omega. 2022 Dec 09;7(50):46825-46832
[PMID:
36570285]
Phytother Res. 2010 Jan;24 Suppl 1:S77-82
[PMID:
19585476]
Signal Transduct Target Ther. 2021 May 31;6(1):201
[PMID:
34054126]
Biochem Pharmacol. 2008 Jun 15;75(12):2345-55
[PMID:
18455702]