Adaptive modifications in plant sulfur metabolism over evolutionary time.

Stanislav Kopriva, Parisa Rahimzadeh Karvansara, Hideki Takahashi
Author Information
  1. Stanislav Kopriva: Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany. ORCID
  2. Parisa Rahimzadeh Karvansara: Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany. ORCID
  3. Hideki Takahashi: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ORCID

Abstract

Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.

Keywords

References

  1. Biochem J. 2011 Sep 1;438(2):325-35 [PMID: 21585336]
  2. Chembiochem. 2017 Nov 2;18(21):2115-2118 [PMID: 28862368]
  3. Proc Natl Acad Sci U S A. 2021 Jun 1;118(22): [PMID: 34035165]
  4. Science. 2017 Jan 20;355(6322):284-286 [PMID: 28104889]
  5. Biochem Biophys Res Commun. 2013 May 17;434(4):829-35 [PMID: 23611783]
  6. Cell Mol Life Sci. 2009 Dec;66(23):3697-710 [PMID: 19644734]
  7. Plant Physiol. 2014 May;165(1):92-104 [PMID: 24692429]
  8. Plant Physiol. 2014 Sep;166(1):442-50 [PMID: 25049360]
  9. J Biol Chem. 2007 Aug 3;282(31):22930-8 [PMID: 17519237]
  10. Science. 2010 Aug 27;329(5995):1065-7 [PMID: 20798316]
  11. Environ Microbiol. 2017 Mar;19(3):1251-1265 [PMID: 28035767]
  12. Plant Cell. 2020 Dec;32(12):3902-3920 [PMID: 33037147]
  13. J Exp Bot. 2004 Aug;55(404):1903-18 [PMID: 15234988]
  14. Molecules. 2022 Sep 19;27(18): [PMID: 36144849]
  15. Biochem Biophys Res Commun. 2001 Aug 3;285(5):1175-9 [PMID: 11478778]
  16. Comp Biochem Physiol A Mol Integr Physiol. 2021 Feb;252:110824 [PMID: 33130327]
  17. Eur J Biochem. 1998 Jul 1;255(1):235-45 [PMID: 9692924]
  18. Science. 1980 Jul 25;209(4455):513-5 [PMID: 17831370]
  19. J Biol Chem. 2019 Aug 16;294(33):12293-12312 [PMID: 31270211]
  20. Plant J. 2014 May;78(4):659-73 [PMID: 24617819]
  21. Biochem J. 1969 Sep;114(3):489-98 [PMID: 4309527]
  22. J Exp Bot. 2004 Aug;55(404):1809-20 [PMID: 15234990]
  23. Plant Cell. 2009 Mar;21(3):910-27 [PMID: 19304933]
  24. Chem Biol Interact. 1998 Feb 20;109(1-3):117-22 [PMID: 9566738]
  25. Biochem J. 2013 Apr 15;451(2):145-54 [PMID: 23535167]
  26. Plants (Basel). 2022 Dec 21;12(1): [PMID: 36616163]
  27. Plant J. 2014 Jan;77(1):31-45 [PMID: 24147819]
  28. J Biol Chem. 2014 Apr 11;289(15):10919-10929 [PMID: 24584934]
  29. Arch Mikrobiol. 1972;84(1):77-86 [PMID: 5053247]
  30. Plant Physiol. 1984 Apr;74(4):866-70 [PMID: 16663524]
  31. Plant Cell. 2012 Oct;24(10):4187-204 [PMID: 23085732]
  32. J Nutr. 2006 Jun;136(6 Suppl):1636S-1640S [PMID: 16702333]
  33. Plant J. 2021 Jul;107(1):268-286 [PMID: 33901336]
  34. FEBS Lett. 2013 Nov 15;587(22):3626-32 [PMID: 24100135]
  35. Z Naturforsch C Biosci. 1978 Jul-Aug;33(7-8):517-20 [PMID: 212888]
  36. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13383-8 [PMID: 8917600]
  37. PLoS One. 2019 Oct 18;14(10):e0220589 [PMID: 31626663]
  38. Appl Environ Microbiol. 2001 Jul;67(7):2873-82 [PMID: 11425697]
  39. Plant Physiol. 2004 Sep;136(1):2443-50 [PMID: 15375200]
  40. J Biol Chem. 2002 Jun 14;277(24):21786-91 [PMID: 11940598]
  41. Science. 2012 Aug 31;337(6098):1081-4 [PMID: 22936775]
  42. Front Plant Sci. 2012 Jul 19;3:163 [PMID: 22833750]
  43. Science. 2017 Jan 20;355(6322):280-284 [PMID: 28104888]
  44. Genome Biol Evol. 2021 Sep 1;13(9): [PMID: 34272861]
  45. Plant Physiol. 2014 Dec;166(4):2065-76 [PMID: 25266633]
  46. Plant Physiol Biochem. 2006 Nov-Dec;44(11-12):628-36 [PMID: 17095238]
  47. Plant Physiol. 2008 Dec;148(4):2096-108 [PMID: 18945935]
  48. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11223-8 [PMID: 12161563]
  49. Trends Plant Sci. 2003 Jun;8(6):259-62 [PMID: 12818659]
  50. Antioxidants (Basel). 2020 Oct 09;9(10): [PMID: 33050229]
  51. Biochem J. 1966 Oct;101(1):103-11 [PMID: 5971771]
  52. Plant Physiol. 1979 Aug;64(2):309-13 [PMID: 16660955]
  53. Front Microbiol. 2011 Apr 13;2:71 [PMID: 21833321]
  54. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8404-9 [PMID: 9653199]
  55. Beilstein J Org Chem. 2011;7:1622-35 [PMID: 22238540]
  56. Nat Commun. 2021 Mar 2;12(1):1392 [PMID: 33654102]
  57. Trends Plant Sci. 2010 May;15(5):283-90 [PMID: 20303821]
  58. Sci Am. 1985 Mar;252(3):114-9 [PMID: 3975593]
  59. Front Plant Sci. 2019 Jul 05;10:885 [PMID: 31333712]
  60. Plant Cell. 2019 Jan;31(1):231-249 [PMID: 30464037]
  61. Eur J Biochem. 2000 Jun;267(12):3647-53 [PMID: 10848982]
  62. J Exp Bot. 2019 Aug 19;70(16):4267-4277 [PMID: 31231771]
  63. Plant Physiol. 1985 Jul;78(3):555-60 [PMID: 16664282]
  64. Appl Environ Microbiol. 1986 Feb;51(2):398-407 [PMID: 16346996]
  65. Antioxidants (Basel). 2020 Jul 15;9(7): [PMID: 32679888]
  66. Plant Physiol. 2006 Jun;141(2):446-55 [PMID: 16531482]
  67. Theor Appl Genet. 2003 Feb;106(4):727-34 [PMID: 12596003]
  68. Arch Biochem Biophys. 2017 Mar 1;617:9-25 [PMID: 27697462]
  69. J Biol Chem. 2022 Aug;298(8):102232 [PMID: 35798140]
  70. J Exp Bot. 2004 Aug;55(404):1775-83 [PMID: 15208336]
  71. J Exp Bot. 2004 Aug;55(404):1799-808 [PMID: 15234989]
  72. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):309-14 [PMID: 22184237]
  73. ISME J. 2017 Dec;11(12):2754-2766 [PMID: 28777380]
  74. Plant Physiol. 2001 Jun;126(2):811-25 [PMID: 11402209]
  75. Plant Cell. 2014 Aug;26(8):3243-60 [PMID: 25122153]
  76. Curr Opin Biotechnol. 2010 Dec;21(6):787-93 [PMID: 21030245]
  77. Science. 2009 Jan 2;323(5910):101-6 [PMID: 19095900]
  78. FEBS Lett. 2000 May 4;473(1):63-6 [PMID: 10802060]
  79. J Exp Bot. 2019 Aug 19;70(16):4237-4250 [PMID: 30868163]
  80. J Hazard Mater. 2021 Mar 15;406:124653 [PMID: 33321325]
  81. J Biol Chem. 2012 Aug 10;287(33):27941-7 [PMID: 22730323]
  82. J Bacteriol. 2000 Jan;182(1):135-42 [PMID: 10613872]
  83. BMC Evol Biol. 2012 Jul 28;12:127 [PMID: 22839361]
  84. Plant Cell. 2001 Mar;13(3):681-93 [PMID: 11251105]
  85. Plant Cell Environ. 2012 Feb;35(2):454-84 [PMID: 21777251]
  86. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1286-90 [PMID: 1741382]
  87. Phytochemistry. 2001 Jan;56(1):5-51 [PMID: 11198818]
  88. Plant Cell. 2000 Jan;12(1):97-110 [PMID: 10634910]
  89. Arabidopsis Book. 2011;9:e0154 [PMID: 22303278]
  90. J Bacteriol. 2005 Feb;187(4):1392-404 [PMID: 15687204]
  91. Front Plant Sci. 2014 Oct 16;5:556 [PMID: 25360143]
  92. Plant Cell. 2009 Mar;21(3):985-99 [PMID: 19293369]
  93. J Bacteriol. 1961 Dec;82:933-9 [PMID: 14484818]
  94. Molecules. 2018 Feb 23;23(2): [PMID: 29473839]
  95. J Exp Bot. 2021 Jan 20;72(1):57-69 [PMID: 32995888]
  96. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13377-82 [PMID: 8917599]
  97. J Biol Chem. 2001 Nov 16;276(46):42881-6 [PMID: 11553635]
  98. Front Plant Sci. 2015 Jan 13;5:773 [PMID: 25628630]
  99. J Bacteriol. 1999 Sep;181(17):5280-7 [PMID: 10464198]
  100. Front Plant Sci. 2020 Jun 04;11:711 [PMID: 32582245]
  101. Plant Physiol. 2001 Jun;126(2):631-42 [PMID: 11402193]
  102. Science. 2011 Mar 4;331(6021):1185-8 [PMID: 21385714]
  103. Plant Cell. 2011 Nov;23(11):3992-4012 [PMID: 22128124]
  104. Plants (Basel). 2023 Mar 22;12(6): [PMID: 36987092]
  105. Plant J. 2019 Jul;99(2):329-343 [PMID: 30900313]
  106. Geobiology. 2011 Jul;9(4):301-12 [PMID: 21627761]
  107. Science. 2009 Jan 2;323(5910):95-101 [PMID: 19095898]
  108. PLoS Biol. 2005 Aug;3(8):e250 [PMID: 16008502]
  109. Nat Plants. 2020 Dec;6(12):1468-1479 [PMID: 33230313]
  110. J Exp Bot. 2024 Feb 2;75(3):1036-1050 [PMID: 37831920]
  111. Curr Opin Plant Biol. 2017 Oct;39:144-151 [PMID: 28759781]
  112. PLoS Biol. 2011 Aug;9(8):e1001125 [PMID: 21857804]
  113. Plant Physiol. 2001 Nov;127(3):1077-88 [PMID: 11706188]
  114. Annu Rev Plant Biol. 2006;57:303-33 [PMID: 16669764]
  115. J Exp Bot. 2004 Aug;55(404):1785-98 [PMID: 15258168]
  116. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279 [PMID: 15012235]
  117. Chem Biol Interact. 2016 Nov 25;259(Pt A):2-7 [PMID: 27174136]
  118. Biochem J. 2012 Jul 15;445(2):275-83 [PMID: 22551219]
  119. ISME J. 2018 Jun;12(7):1715-1728 [PMID: 29467397]
  120. Plant Cell. 2008 Sep;20(9):2484-96 [PMID: 18776059]
  121. Plant Physiol. 2013 Nov;163(3):1133-41 [PMID: 24027241]
  122. Nitric Oxide. 2014 Sep 15;41:72-8 [PMID: 24582856]
  123. BMC Evol Biol. 2008 Feb 04;8:39 [PMID: 18248682]
  124. Annu Rev Plant Biol. 2002;53:159-82 [PMID: 12221971]
  125. Nat Genet. 2007 Jul;39(7):896-900 [PMID: 17589509]
  126. Plant Physiol. 2014 Nov;166(3):1593-608 [PMID: 25245030]
  127. Plant Physiol. 2001 Oct;127(2):543-50 [PMID: 11598228]
  128. Antioxid Redox Signal. 2023 Nov;39(13-15):983-999 [PMID: 37565274]
  129. Annu Rev Plant Biol. 2011;62:157-84 [PMID: 21370978]
  130. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4567-76 [PMID: 27432987]
  131. Science. 2020 Jan 24;367(6476):431-435 [PMID: 31974252]

Grants

  1. 426501900/Deutsche Forschungsgemeinschaft

MeSH Term

Sulfur
Plants
Biological Evolution
Adaptation, Physiological

Chemicals

Sulfur

Word Cloud

Created with Highcharts 10.0.0SmetabolismevolutionaryessentialEarthtakecompoundsacidmethionineplantimportancemaymetabolicpathwaysevolutionsulfurSulfurelementlifePlantsableutilizesulfateSO42-oxidizedinorganicformreductiveassimilatorypathwaycouplesphotosyntheticenergyconversionOrganicsubsequentlysynthesizedplantsmadeaccessibleanimalsprimarilyaminoThusclearlynutritionalglobalfoodchainmetabolitespartredoxregulationdriverscofactorsprostheticgroupsFe-ScentersCoAthiaminelipoicenzymesreflectscriticalfunctionalinnovationdiversificationsreviewmajoralterationstookplaceacrossdifferentscalesoutlineresearchdirectionsadvantageunderstandingadaptationsAdaptivemodificationstimeCysteineglucosinolatesglutathionenaturalvariation

Similar Articles

Cited By