Comparative analysis of genomic characteristics and immune response between Mycobacterium tuberculosis strains cultured continuously for 25 years and H37Rv.

Chuanzhi Zhu, Jing Dong, Yuheng Duan, Hongyan Jia, Lanyue Zhang, Aiying Xing, Boping Du, Qi Sun, Yinxia Huang, Zongde Zhang, Liping Pan, Zihui Li
Author Information
  1. Chuanzhi Zhu: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China. ORCID
  2. Jing Dong: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  3. Yuheng Duan: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  4. Hongyan Jia: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  5. Lanyue Zhang: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  6. Aiying Xing: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  7. Boping Du: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  8. Qi Sun: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  9. Yinxia Huang: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  10. Zongde Zhang: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  11. Liping Pan: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
  12. Zihui Li: Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.

Abstract

Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.

Keywords

References

  1. Cell Host Microbe. 2008 Feb 14;3(2):97-103 [PMID: 18312844]
  2. Vaccine. 2021 Dec 8;39(50):7277-7285 [PMID: 34238608]
  3. Vaccine. 1999 Feb 26;17(7-8):915-22 [PMID: 10067698]
  4. Lancet Respir Med. 2019 Sep;7(9):757-770 [PMID: 31416768]
  5. Cell Mol Life Sci. 2017 May;74(9):1625-1648 [PMID: 27866220]
  6. Lancet. 2006 Apr 8;367(9517):1173-80 [PMID: 16616560]
  7. J Interferon Cytokine Res. 2017 Sep;37(9):421-431 [PMID: 28829246]
  8. Genomics. 2017 Oct;109(5-6):471-474 [PMID: 28743540]
  9. PLoS One. 2014 Jun 20;9(6):e99853 [PMID: 24950047]
  10. Acta Biochim Biophys Sin (Shanghai). 2017 Sep 1;49(9):835-844 [PMID: 28910983]
  11. J Exp Med. 1934 Sep 30;60(4):515-40 [PMID: 19870319]
  12. Vaccine. 2013 Oct 1;31(42):4867-73 [PMID: 23965219]
  13. J Antimicrob Chemother. 2018 Dec 1;73(12):3317-3321 [PMID: 30239821]
  14. J Cell Mol Med. 2021 Nov;25(22):10504-10520 [PMID: 34632719]
  15. Clin Epigenetics. 2019 Oct 7;11(1):137 [PMID: 31590682]
  16. Int J Syst Evol Microbiol. 2016 Feb;66(2):1100-1103 [PMID: 26585518]
  17. Infect Genet Evol. 2012 Jun;12(4):807-10 [PMID: 21723422]
  18. Infect Immun. 2005 Feb;73(2):1196-203 [PMID: 15664964]
  19. Scand J Immunol. 2009 Oct;70(4):345-57 [PMID: 19751269]
  20. Vaccine. 2006 Apr 24;24(17):3408-19 [PMID: 16564606]
  21. Nature. 1999 Nov 4;402(6757):79-83 [PMID: 10573420]
  22. J Interferon Cytokine Res. 2016 Feb;36(2):140-7 [PMID: 26588672]
  23. Front Immunol. 2022 Dec 07;13:1025931 [PMID: 36569899]
  24. Virulence. 2020 Dec;11(1):898-915 [PMID: 32713249]
  25. Mol Microbiol. 2002 Jul;45(2):365-74 [PMID: 12123450]
  26. Tuberculosis (Edinb). 2016 Jan;96:71-4 [PMID: 26786657]
  27. Front Cell Infect Microbiol. 2020 Nov 26;10:594288 [PMID: 33324577]
  28. Sci Signal. 2022 Oct 04;15(754):eabe1621 [PMID: 36194648]
  29. Vaccine. 2020 Feb 5;38(6):1416-1423 [PMID: 31862194]
  30. mBio. 2015 Oct 20;6(5):e01289-15 [PMID: 26489860]
  31. J Infect Dis. 2017 Sep 1;216(5):525-533 [PMID: 28329234]
  32. PLoS One. 2008 Jun 11;3(6):e2375 [PMID: 18584054]
  33. Lancet Infect Dis. 2022 Jan;22(1):e2-e12 [PMID: 34506734]
  34. Mol Microbiol. 1999 Oct;34(2):257-67 [PMID: 10564470]
  35. J Bacteriol. 2008 Feb;190(4):1329-34 [PMID: 18065542]
  36. Cell Discov. 2021 Oct 5;7(1):90 [PMID: 34608123]
  37. Apoptosis. 2017 Apr;22(4):502-509 [PMID: 27987050]
  38. Nat Commun. 2015 Oct 13;6:8533 [PMID: 26460802]
  39. Vaccine. 2005 May 31;23(29):3753-61 [PMID: 15893612]
  40. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  41. Vaccine. 2015 Oct 13;33(42):5633-5639 [PMID: 26363381]
  42. Vaccine. 2016 Feb 3;34(6):735-43 [PMID: 26768127]
  43. Lancet Infect Dis. 2016 Feb;16(2):219-26 [PMID: 26603173]
  44. Mol Immunol. 2015 Aug;66(2):429-38 [PMID: 26005110]
  45. Nat Commun. 2015 Nov 16;6:8922 [PMID: 26568365]
  46. Front Cell Infect Microbiol. 2023 Mar 03;13:1062963 [PMID: 36936766]
  47. Microbes Infect. 2011 Dec;13(14-15):1242-51 [PMID: 21813088]
  48. Front Microbiol. 2012 Jan 10;2:266 [PMID: 22291682]
  49. Lancet Respir Med. 2015 Dec;3(12):953-62 [PMID: 26598141]
  50. Nat Med. 2002 Oct;8(10):1171-4 [PMID: 12219086]
  51. NPJ Vaccines. 2021 Jan 4;6(1):4 [PMID: 33397991]

Grants

  1. 7212012/Beijing Natural Science Foundation
  2. 82070012/National Natural Science Foundation of China

MeSH Term

Mycobacterium tuberculosis
Animals
Tuberculosis Vaccines
Mice
Macrophages
Virulence
Vaccines, Attenuated
Genome, Bacterial
Genomics
Mice, Inbred C57BL
Cytokines
Tuberculosis
Polymorphism, Single Nucleotide
Disease Models, Animal

Chemicals

Tuberculosis Vaccines
Vaccines, Attenuated
Cytokines

Word Cloud

Created with Highcharts 10.0.0CHVAC-25attenuatedvaccineMtbgenomicTBMycobacteriumtuberculosisvirulenceH37Rvanalysisimmuneeffectivestrainculturedcontinuously25yearslaboratorysignificantlyreducedcomparedcomparativegenesmacrophagesAdditionallystrainsresponseTuberculosiscontinuesposesignificantglobalhealthchallengeemphasizingcriticalneedpreventivemeasuresAlthoughmanystudiestrieddevelopnewvaccinesstudyreportnovelexhibitedvirulentC57BL/6Jseverecombinedimmunodeficiencydiseasemiceidentified93potentialabsentsegments65singlenucleotidepolymorphicsitesacross47codingNotablydeletionmutationppsCRv2933involvedphthioceroldimycocerosatesynthesislikelycontributesattenuationFurthermoreresponsesH37Rv-CHVAC-25-infectedshowedtriggeredrobustupregulation173particularlycytokinescrucialcombatinginfectionsurvivalfindingsreiteratepossibilityobtainingprolongedcultivationechoinginitialconceptionH37RanearlycenturyagosimilaritygenotypesassociatedpositionspromisingcandidatedevelopmentComparativecharacteristics

Similar Articles

Cited By

No available data.