Unveiling brain disorders using liquid biopsy and Raman spectroscopy.

Jeewan C Ranasinghe, Ziyang Wang, Shengxi Huang
Author Information
  1. Jeewan C Ranasinghe: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA. shengxi.huang@rice.edu.
  2. Ziyang Wang: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA. shengxi.huang@rice.edu.
  3. Shengxi Huang: Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA. shengxi.huang@rice.edu. ORCID

Abstract

Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.

References

  1. J Biophotonics. 2009 Feb;2(1-2):13-28 [PMID: 19343682]
  2. Sci Rep. 2018 Mar 9;8(1):4260 [PMID: 29523800]
  3. Nano Lett. 2008 Jun;8(6):1729-35 [PMID: 18489171]
  4. Analyst. 2021 May 4;146(9):2945-2954 [PMID: 33949418]
  5. J Phys Chem C Nanomater Interfaces. 2021 Nov 25;125(46):25615-25623 [PMID: 34868446]
  6. J Biophotonics. 2020 Mar;13(3):e201960033 [PMID: 31868266]
  7. ACS Chem Neurosci. 2024 Jan 3;15(1):78-85 [PMID: 38096362]
  8. RSC Adv. 2018 Jan 15;8(6):3143-3150 [PMID: 35541182]
  9. Int J Mol Sci. 2024 Apr 26;25(9): [PMID: 38731955]
  10. RSC Adv. 2018 Jul 20;8(46):25888-25908 [PMID: 35541973]
  11. Phys Chem Chem Phys. 2017 Nov 29;19(46):31103-31112 [PMID: 29138762]
  12. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Nov 5;280:121542 [PMID: 35792482]
  13. Biosensors (Basel). 2021 Sep 30;11(10): [PMID: 34677321]
  14. Sci Rep. 2021 May 11;11(1):9951 [PMID: 33976274]
  15. Biomark Med. 2019 Dec;13(17):1447-1457 [PMID: 31552762]
  16. Anal Chem. 2016 Nov 15;88(22):10884-10892 [PMID: 27731981]
  17. J Clin Med. 2023 Jun 08;12(12): [PMID: 37373618]
  18. Front Biosci (Schol Ed). 2022 Aug 1;14(3):22 [PMID: 36137977]
  19. J Alzheimers Dis. 2019;71(4):1351-1359 [PMID: 31524171]
  20. J Phys Chem B. 2006 Mar 9;110(9):4002-6 [PMID: 16509689]
  21. Nat Biomed Eng. 2020 Jun;4(6):610-623 [PMID: 32015408]
  22. Chem Rev. 2017 Jun 14;117(11):7377-7427 [PMID: 28262022]
  23. Analyst. 2017 Nov 20;142(23):4415-4421 [PMID: 29090690]
  24. ACS Sens. 2019 Aug 23;4(8):2140-2149 [PMID: 31353891]
  25. J Chem Phys. 2021 Oct 14;155(14):144202 [PMID: 34654313]
  26. Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1771-1774 [PMID: 28071842]
  27. Adv Sci (Weinh). 2024 Feb;11(7):e2300668 [PMID: 38072672]
  28. Appl Spectrosc. 2022 Apr;76(4):393-415 [PMID: 34041957]
  29. Analyst. 2020 May 18;145(10):3461-3480 [PMID: 32301450]
  30. Biomark Med. 2020 Feb;14(2):151-163 [PMID: 32064896]
  31. RSC Adv. 2021 Jun 8;11(33):20403-20422 [PMID: 35479927]
  32. Brain Commun. 2024 Feb 07;6(1):fcae030 [PMID: 38370446]
  33. Anal Chem. 2021 Feb 2;93(4):2578-2588 [PMID: 33432809]
  34. Molecules. 2020 Sep 10;25(18): [PMID: 32927716]
  35. Anal Chem. 2022 Jan 11;94(1):86-119 [PMID: 34920669]
  36. Analyst. 2023 Jun 12;148(12):2809-2817 [PMID: 37219873]
  37. Small. 2008 Oct;4(10):1576-99 [PMID: 18844309]
  38. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8157-61 [PMID: 21536908]
  39. Anal Chim Acta. 2021 Nov 15;1185:339074 [PMID: 34711319]
  40. Anal Chem. 2023 Jul 25;95(29):11019-11027 [PMID: 37419505]
  41. J Biophotonics. 2020 Mar;13(3):e201960123 [PMID: 31702875]
  42. Anal Chem. 2017 Sep 19;89(18):10104-10110 [PMID: 28817769]
  43. J Alzheimers Dis. 2013;34(4):911-20 [PMID: 23302656]
  44. Appl Spectrosc. 2013 Aug;67(8):813-28 [PMID: 23876720]
  45. ACS Photonics. 2022 Feb 16;9(2):333-350 [PMID: 35211644]
  46. J Am Chem Soc. 2004 Mar 3;126(8):2399-408 [PMID: 14982446]
  47. Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4545-4550 [PMID: 32964527]
  48. Chem Soc Rev. 2017 Jul 3;46(13):3945-3961 [PMID: 28639667]
  49. ACS Photonics. 2022 Aug 25;9(9):2963-2972 [PMID: 37552735]
  50. Light Sci Appl. 2021 Apr 20;10(1):87 [PMID: 33879766]
  51. Analyst. 2013 Jul 21;138(14):4092-102 [PMID: 23712384]
  52. Sci Adv. 2023 Jul 14;9(28):eadg9644 [PMID: 37436975]
  53. Sci Rep. 2020 Jun 23;10(1):10175 [PMID: 32576912]
  54. Front Neurosci. 2021 Oct 26;15:704963 [PMID: 34764849]
  55. J Am Chem Soc. 1976 Oct 27;98(22):7075-80 [PMID: 965667]
  56. J Gen Virol. 2005 Dec;86(Pt 12):3425-3431 [PMID: 16298990]
  57. J Korean Med Sci. 1994 Jun;9(3):239-42 [PMID: 7993591]
  58. Adv Sci (Weinh). 2022 Jul;9(20):e2200315 [PMID: 35521971]
  59. Clin Biochem. 2019 Oct;72:58-63 [PMID: 30954438]
  60. ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13693-700 [PMID: 26027901]
  61. J Phys Chem B. 2012 Aug 9;116(31):9376-86 [PMID: 22780445]
  62. Pharmacol Rev. 2024 Feb 13;76(2):199-227 [PMID: 38351075]
  63. Sci Rep. 2022 Sep 28;12(1):16199 [PMID: 36171258]
  64. Commun Biol. 2021 Apr 15;4(1):474 [PMID: 33859370]
  65. J Mov Disord. 2024 Apr;17(2):181-188 [PMID: 38379425]
  66. J Biomed Opt. 2014 May;19(5):051205 [PMID: 24297060]
  67. Biochemistry. 2014 Oct 21;53(41):6550-65 [PMID: 25284680]
  68. Appl Spectrosc. 2022 Nov;76(11):1317-1328 [PMID: 35506336]
  69. Anal Chem. 2021 Dec 28;93(51):16995-17002 [PMID: 34905686]
  70. ACS Chem Neurosci. 2018 Mar 21;9(3):446-461 [PMID: 29390184]
  71. J Biophotonics. 2023 Mar;16(3):e202200231 [PMID: 36308009]
  72. J Biomed Opt. 2020 Aug;25(8):1-12 [PMID: 32767890]
  73. Chem Sci. 2019 Nov 14;11(2):525-533 [PMID: 32190272]
  74. J Biomol Struct Dyn. 2024 Mar 23;:1-14 [PMID: 38520152]
  75. Neurol Ther. 2019 Dec;8(Suppl 2):83-94 [PMID: 31833026]
  76. Opt Lett. 2008 Nov 1;33(21):2491-3 [PMID: 18978897]
  77. J Alzheimers Dis. 2016 Dec 6;55(3):1175-1182 [PMID: 27792013]
  78. Anal Chem. 2020 Jul 7;92(13):9389-9398 [PMID: 32484329]
  79. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Nov 5;260:119957 [PMID: 34082350]
  80. Nat Commun. 2023 Jan 4;14(1):48 [PMID: 36599851]
  81. Phys Chem Chem Phys. 2010 Oct 14;12(38):12040-9 [PMID: 20730156]
  82. Chem Biol. 2004 Jun;11(6):759-64 [PMID: 15217609]
  83. Anal Chem. 2019 Jun 4;91(11):7070-7077 [PMID: 31063356]
  84. Biosens Bioelectron. 2022 Jan 15;196:113730 [PMID: 34736099]
  85. ACS Cent Sci. 2018 Jul 25;4(7):862-867 [PMID: 30062114]
  86. Free Neuropathol. 2022 Aug 05;3: [PMID: 37284145]
  87. ACS Nano. 2020 Jan 28;14(1):28-117 [PMID: 31478375]
  88. Exp Dermatol. 2021 May;30(5):652-663 [PMID: 33566431]
  89. Front Bioeng Biotechnol. 2022 May 27;10:906728 [PMID: 35711634]
  90. Clin Exp Optom. 2022 Mar;105(2):166-176 [PMID: 34592130]
  91. Chem Rev. 2018 May 23;118(10):4946-4980 [PMID: 29638112]
  92. Int J Biol Macromol. 2021 Dec 15;193(Pt A):838-846 [PMID: 34728300]
  93. Small Methods. 2024 Jan;8(1):e2301243 [PMID: 37888799]
  94. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7929-E7938 [PMID: 28874525]
  95. J Sport Health Sci. 2023 May;12(3):369-378 [PMID: 34461327]
  96. Langmuir. 2023 Feb 14;39(6):2135-2151 [PMID: 36739536]
  97. Chem Soc Rev. 2015 May 21;44(10):2837-48 [PMID: 25761511]
  98. Nanomedicine. 2019 Nov;22:102097 [PMID: 31648040]
  99. Analyst. 2014 Aug 21;139(16):4073-80 [PMID: 24949495]
  100. Expert Rev Mol Diagn. 2021 Aug;21(8):767-787 [PMID: 34115952]
  101. Biophys J. 1993 Nov;65(5):1916-28 [PMID: 8298021]
  102. Chem Soc Rev. 2017 Jul 7;46(13):4042-4076 [PMID: 28660954]
  103. Chem Soc Rev. 2016 Apr 7;45(7):1803-18 [PMID: 26612430]
  104. Sensors (Basel). 2019 Aug 02;19(15): [PMID: 31382386]
  105. Sci Adv. 2018 Nov 16;4(11):eaat7715 [PMID: 30456301]
  106. Sci Rep. 2017 Nov 15;7(1):15603 [PMID: 29142266]
  107. PLoS One. 2016 Jun 21;11(6):e0158000 [PMID: 27327445]
  108. J Appl Spectrosc. 2023;89(6):1203-1211 [PMID: 36718373]
  109. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 5;302:123088 [PMID: 37392535]
  110. Bioorg Chem. 2007 Jun;35(3):284-93 [PMID: 17316745]
  111. Anal Chem. 2011 Jul 1;83(13):5086-92 [PMID: 21604741]
  112. Cells. 2022 Apr 05;11(7): [PMID: 35406790]
  113. Int J Mol Sci. 2023 Jan 25;24(3): [PMID: 36768712]
  114. Clin Biochem. 2019 Oct;72:39-51 [PMID: 30953619]
  115. NPJ Regen Med. 2017 May 15;2:12 [PMID: 29302348]
  116. Nano Lett. 2020 Oct 14;20(10):7304-7312 [PMID: 32866018]
  117. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jun 5;254:119603 [PMID: 33743309]
  118. J Biomed Opt. 2020 May;25(5):1-36 [PMID: 32358930]
  119. Methods Enzymol. 1986;130:311-31 [PMID: 3773738]
  120. Chem Soc Rev. 2016 Apr 7;45(7):1958-79 [PMID: 26999370]
  121. Anal Bioanal Chem. 2015 Oct;407(25):7747-56 [PMID: 26255297]
  122. Int J Nanomedicine. 2021 Mar 05;16:1901-1911 [PMID: 33707945]
  123. Front Neurosci. 2024 Feb 02;18:1301107 [PMID: 38370434]
  124. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Mar 5;248:119188 [PMID: 33268033]
  125. ACS Chem Neurosci. 2018 Nov 21;9(11):2786-2794 [PMID: 29865787]
  126. Parkinsonism Relat Disord. 2019 Jun;63:3-9 [PMID: 30876839]
  127. Chem Sci. 2023 Oct 25;14(45):12869-12882 [PMID: 38023499]
  128. J Chem Phys. 2019 Dec 14;151(22):224701 [PMID: 31837661]
  129. Biosensors (Basel). 2022 Dec 26;13(1): [PMID: 36671862]
  130. Nat Commun. 2021 Mar 8;12(1):1511 [PMID: 33686065]
  131. ACS Nano. 2022 Apr 26;16(4):6426-6436 [PMID: 35333038]
  132. Sci Rep. 2020 Jul 16;10(1):11734 [PMID: 32678134]
  133. Adv Drug Deliv Rev. 2015 Jul 15;89:121-34 [PMID: 25809988]
  134. Cells. 2023 Nov 08;12(22): [PMID: 37998324]
  135. BMC Neurol. 2018 Sep 26;18(1):155 [PMID: 30257642]
  136. BMC Neurol. 2010 Nov 03;10:108 [PMID: 21047401]
  137. Chem Rev. 2017 Dec 13;117(23):13890-13908 [PMID: 29125755]
  138. Chem Soc Rev. 2020 Oct 19;49(20):7428-7453 [PMID: 32996518]
  139. Anal Chem. 2003 Aug 15;75(16):4312-8 [PMID: 14632151]
  140. J Mater Res. 2022;37(10):1689-1713 [PMID: 35615304]
  141. Lancet Neurol. 2020 May;19(5):422-433 [PMID: 32333900]
  142. Nucleic Acids Res. 1983 Aug 25;11(16):5747-61 [PMID: 6889135]
  143. Sci Rep. 2020 May 22;10(1):8507 [PMID: 32444780]
  144. Spectrochim Acta A Mol Biomol Spectrosc. 2017 Oct 5;185:317-335 [PMID: 28599236]
  145. Acc Chem Res. 2016 Dec 20;49(12):2725-2735 [PMID: 27993003]
  146. Chem Rev. 2013 Aug 14;113(8):5766-81 [PMID: 23697873]
  147. Biosens Bioelectron. 2021 Apr 1;177:112967 [PMID: 33429202]
  148. Spectrochim Acta A Mol Biomol Spectrosc. 2024 Jan 5;304:123392 [PMID: 37716043]
  149. Anal Chim Acta. 2022 Feb 22;1195:339445 [PMID: 35090659]
  150. Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15738-15742 [PMID: 30278104]
  151. Crit Rev Anal Chem. 2023;53(7):1561-1590 [PMID: 35157535]
  152. Sensors (Basel). 2019 Mar 07;19(5): [PMID: 30866575]
  153. Biology (Basel). 2021 Jul 28;10(8): [PMID: 34439949]
  154. Anal Chem. 2022 Jan 11;94(1):120-142 [PMID: 34852454]
  155. Small. 2019 May;15(19):e1900613 [PMID: 30957959]
  156. J Biophotonics. 2015 Jul;8(7):584-96 [PMID: 25256347]
  157. Neurosci Lett. 2013 Oct 11;553:63-7 [PMID: 23973333]
  158. Chemphyschem. 2018 Jan 5;19(1):8-18 [PMID: 29106771]
  159. Sci Adv. 2023 Nov 17;9(46):eadg5431 [PMID: 37967190]
  160. Chem Soc Rev. 2022 Apr 4;51(7):2601-2680 [PMID: 35234776]
  161. Sci Rep. 2019 Oct 28;9(1):15437 [PMID: 31659197]
  162. J Am Chem Soc. 2011 Apr 27;133(16):6102-5 [PMID: 21443184]
  163. Analyst. 2017 Apr 10;142(8):1216-1226 [PMID: 28001146]
  164. Sci Rep. 2023 May 4;13(1):7282 [PMID: 37142690]
  165. Sci Transl Med. 2015 Feb 11;7(274):274ra19 [PMID: 25673764]
  166. Nanoscale. 2018 Dec 21;10(47):22493-22503 [PMID: 30480292]
  167. Sci Adv. 2023 Mar 24;9(12):eadf3504 [PMID: 36961894]
  168. Anal Chim Acta. 2013 Sep 2;793:1-10 [PMID: 23953200]

Grants

  1. R01 AG077016/NIA NIH HHS

MeSH Term

Spectrum Analysis, Raman
Humans
Liquid Biopsy
Brain Diseases
Brain Injuries, Traumatic
Neurodegenerative Diseases
Brain

Word Cloud

Created with Highcharts 10.0.0braindisordersmolecularliquidbiopsyRSdiagnosisdiseasepotentialRamanNDsTBIearlyinformationnon-invasiveofferingspectroscopyanalysistoolBrainincludingneurodegenerativediseasestraumaticinjurypresentsignificantchallengesinterventionConventionalimagingmodalitiesvaluablelackspecificitynecessaryprecisecharacterizationComparedstudyconventionaltissuesfocusesbloodtearsalivacerebrospinalfluidCSFalsounveilsmyriadunderlyingprocessesprovidingabundantpredictiveclinicaladditionminimally-highlyrepeatablecontinuousmonitoringabilityproviderichcost-effectivenessholdsgreattransformativeadvancementsdetectionunderstandingbiochemicalchangesassociatedRecentdevelopmentsenhancementtechnologiesadvanceddatamethodsenhancedapplicabilityprobingintricatesignatureswithinbiologicalfluidsnewinsightspathologyreviewexploresgrowingrolepromisingemergingparticularlydiscussescurrentlandscapefutureprospectshighlightingmolecularlyspecificdiagnosticUnveilingusing

Similar Articles

Cited By (1)