Occurrence, efficiency of treatment processes, source apportionment and human health risk assessment of pharmaceuticals and xenoestrogen compounds in tap water from some Ghanaian communities.

Joseph K Adjei, Henrietta Acquah, David K Essumang
Author Information
  1. Joseph K Adjei: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  2. Henrietta Acquah: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.
  3. David K Essumang: Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana.

Abstract

The occurrence of pharmaceuticals and xenoestrogen compounds (PXCs) in drinking water presents a dire human health risk challenge. The problem stems from the high anthropogenic pollution load on source water and the inefficiencies of the conventional water treatment plants in treating PXCs. This study assessed the PXCs levels and the consequential health risks of exposure to tap water from selected Ghanaian communities as well as that of raw water samples from the respective treatment plants. Thus the PXCs treatment efficiency of two drinking water treatment plants in the metropolises studied was also assessed. The study also conducted source apportionment of the PXCs in the tap water. Twenty six (26) tap and raw water samples from communities in the Cape Coast and Sekondi-Takoradi metropolises were extracted using SPE cartridges and analysed for PXCs using Ultra-fast-HPLC-UV instrument. Elevated levels of PXCs up to 24.79 and 22.02 μg/L were respectively recorded in raw and tap water samples from the metropolises. Consequently, elevated non-cancer health risk (HI > 1) to residential adults were found for tap water samples from Cape Coast metropolis and also for some samples from Sekondi-Takoradi metropolis. Again, elevated cumulative oral cancer risks >10 and dermal cancer risk up to 4 × 10 were recorded. The source apportionment revealed three significant sources of PXCs in tap water samples studied. The results revealed the inefficiency of the treatment plants in removing PXCs from the raw water during treatments. The situation thus requires urgent attention to ameliorate it, safeguarding public health. It is recommended that the conventional water treatment process employed be augmented with advanced treatment technologies to improve their efficacy in PXCs treatment.

Keywords

References

  1. Sci Total Environ. 2021 Nov 25;797:149008 [PMID: 34303974]
  2. Aquat Toxicol. 2017 Dec;193:9-17 [PMID: 29017090]
  3. Arch Environ Contam Toxicol. 2014 Jan;66(1):86-99 [PMID: 23921451]
  4. Int J Environ Res Public Health. 2022 Jun 23;19(13): [PMID: 35805373]
  5. Rev Environ Contam Toxicol. 2016;238:91-105 [PMID: 26572767]
  6. Sci Total Environ. 2016 Oct 1;566-567:1660-1669 [PMID: 27342641]
  7. J Natl Cancer Inst. 2016 May 18;108(10): [PMID: 27193440]
  8. Food Chem Toxicol. 2019 Mar;125:462-466 [PMID: 30710599]
  9. Int Health. 2020 Feb 12;12(2):107-115 [PMID: 31251355]
  10. Ecotoxicol Environ Saf. 2021 Apr 15;213:112044 [PMID: 33601171]
  11. Pharm Res. 2004 Jan;21(1):83-92 [PMID: 14984261]
  12. Aquat Toxicol. 2015 Jun;163:109-20 [PMID: 25889087]
  13. Water Res. 2011 Jan;45(3):1432-42 [PMID: 21122885]
  14. J Environ Manage. 2017 May 15;193:211-220 [PMID: 28222352]
  15. Aquat Toxicol. 2011 Aug;104(3-4):278-90 [PMID: 21641296]
  16. Chemosphere. 2022 Jan;286(Pt 3):131876 [PMID: 34418657]
  17. Int J Mol Sci. 2016 Dec 13;17(12): [PMID: 27983596]
  18. Int J Mol Sci. 2020 Mar 12;21(6): [PMID: 32178293]
  19. Comp Biochem Physiol C Toxicol Pharmacol. 2020 Apr;230:108701 [PMID: 31911191]
  20. Heliyon. 2022 Aug 19;8(8):e10337 [PMID: 36060999]
  21. Environ Pollut. 2019 May;248:368-379 [PMID: 30818116]
  22. Environ Sci Pollut Res Int. 2017 Jun;24(18):15838-15851 [PMID: 28534270]
  23. Sci Total Environ. 2021 Oct 20;792:148306 [PMID: 34157532]
  24. Aquat Toxicol. 2016 May;174:109-22 [PMID: 26930480]
  25. Environ Pollut. 2021 Feb 15;271:116353 [PMID: 33385890]
  26. Biotech Histochem. 2016;91(4):277-82 [PMID: 26984645]
  27. Food Chem Toxicol. 2013 Aug;58:86-94 [PMID: 23603007]
  28. Toxicol Rep. 2021 Jul 31;8:1538-1557 [PMID: 34430217]
  29. Mol Biol Rep. 2017 Feb;44(1):35-50 [PMID: 27783191]
  30. Environ Res. 2019 Sep;176:108575 [PMID: 31299621]
  31. Toxicol Rep. 2019 Nov 18;6:1263-1272 [PMID: 31788437]
  32. J Dairy Sci. 2017 May;100(5):3373-3383 [PMID: 28259402]
  33. Life Sci. 2020 Jul 15;253:117738 [PMID: 32360618]
  34. Environ Health. 2012 Jun 28;11 Suppl 1:S8 [PMID: 22759508]
  35. Compr Physiol. 2016 Jun 13;6(3):1135-60 [PMID: 27347888]
  36. Neuro Endocrinol Lett. 2018 Oct;39(4):294-298 [PMID: 30531698]
  37. Int J Environ Res Public Health. 2021 Nov 09;18(22): [PMID: 34831521]
  38. Sci Total Environ. 2012 Jun 15;427-428:332-8 [PMID: 22578698]
  39. Sci Total Environ. 2019 Jan 1;646:1459-1467 [PMID: 30235631]
  40. Toxicol Rep. 2022 Jun 22;9:1398-1409 [PMID: 36518411]
  41. Environ Monit Assess. 2015 Oct;188(10):562 [PMID: 27624744]
  42. Toxics. 2021 Apr 20;9(4): [PMID: 33923920]
  43. Sci Total Environ. 2020 Dec 1;746:141165 [PMID: 32771758]
  44. Nutrients. 2022 Sep 15;14(18): [PMID: 36145189]
  45. Chemosphere. 2015 Feb;120:115-22 [PMID: 25014902]
  46. Environ Pollut. 2013 Feb;173:133-7 [PMID: 23202643]
  47. Oxid Med Cell Longev. 2020 Nov 17;2020:8875604 [PMID: 33294128]
  48. Anal Chem. 2020 Jan 7;92(1):473-505 [PMID: 31825597]
  49. Br J Cancer. 2020 Jul;123(2):316-324 [PMID: 32376888]
  50. Chemosphere. 2021 Sep;279:130381 [PMID: 33878699]
  51. Sci Total Environ. 2018 Sep 1;634:542-549 [PMID: 29635196]
  52. Mol Cell Endocrinol. 2020 Jan 1;499:110614 [PMID: 31606416]
  53. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8897-901 [PMID: 17517636]
  54. Ecotoxicol Environ Saf. 2017 Jun;140:222-229 [PMID: 28267651]
  55. Environ Geochem Health. 2020 Nov;42(11):3795-3810 [PMID: 32594417]
  56. Water Res. 2016 Oct 15;103:133-140 [PMID: 27448038]
  57. Front Public Health. 2018 May 23;6:141 [PMID: 29876339]
  58. Chemosphere. 2019 Apr;220:783-792 [PMID: 30611077]
  59. Trends Cogn Sci. 2017 Feb;21(2):125-136 [PMID: 28089524]
  60. Environ Sci Pollut Res Int. 2019 Feb;26(6):6107-6115 [PMID: 30617890]
  61. Water Res. 2013 Jun 15;47(10):3347-63 [PMID: 23623470]
  62. Food Chem Toxicol. 2018 Jan;111:125-132 [PMID: 29128613]
  63. Mutat Res Genet Toxicol Environ Mutagen. 2019 Feb;838:28-36 [PMID: 30678825]
  64. Environ Int. 2020 Nov;144:106004 [PMID: 32745782]
  65. Evol Appl. 2013 Dec;6(8):1160-70 [PMID: 24478798]
  66. Curr Pharm Des. 2016;22(10):1334-49 [PMID: 26972291]
  67. Environ Sci Pollut Res Int. 2018 Sep;25(26):25822-25839 [PMID: 30039489]
  68. AAPS J. 2014 Mar;16(2):299-310 [PMID: 24470211]
  69. Sci Total Environ. 2021 Apr 1;763:142941 [PMID: 33158523]
  70. Environ Res. 2022 Sep;212(Pt A):113133 [PMID: 35337834]
  71. Drug Chem Toxicol. 2019 Sep;42(5):478-486 [PMID: 29392957]
  72. Gen Comp Endocrinol. 2015 Apr 1;214:195-219 [PMID: 25277515]
  73. Environ Int. 2017 Feb;99:107-119 [PMID: 28040262]

Word Cloud

Created with Highcharts 10.0.0waterPXCstreatmenttaphealthsamplesrisksourceplantsrawapportionmentcompoundscommunitiesmetropolisesalsopharmaceuticalsxenoestrogendrinkinghumanconventionalstudyassessedlevelsrisksGhanaianefficiencystudiedCapeCoastSekondi-TakoradiusingrecordedelevatedmetropoliscancerrevealedoccurrencepresentsdirechallengeproblemstemshighanthropogenicpollutionloadinefficienciestreatingconsequentialexposureselectedwellrespectiveThustwoconductedTwentysix26extractedSPEcartridgesanalysedUltra-fast-HPLC-UVinstrumentElevated24792202 μg/LrespectivelyConsequentlynon-cancerHI > 1residentialadultsfoundcumulativeoral>10dermal4 × 10threesignificantsourcesresultsinefficiencyremovingtreatmentssituationthusrequiresurgentattentionamelioratesafeguardingpublicrecommendedprocessemployedaugmentedadvancedtechnologiesimproveefficacyOccurrenceprocessesassessmentBisphenolEndocrine-disruptingHumanSourceTapXenoestrogens

Similar Articles

Cited By