Development, characterization, and evaluation of Zn-SA-chitosan bionanoconjugates on wheat seed, experiencing chilling stress during germination.

Narender Mohan, Ajay Pal, Vinod Saharan, Anuj Kumar, Rahul Vashishth, Sabina Evan Prince
Author Information
  1. Narender Mohan: Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India.
  2. Ajay Pal: Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India.
  3. Vinod Saharan: Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313 001, India.
  4. Anuj Kumar: ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
  5. Rahul Vashishth: Department of Biological Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
  6. Sabina Evan Prince: Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.

Abstract

This study aimed to develop and characterize the chitosan bionanoconjugates (BNCs) loaded with zinc (Zn) and salicylic acid (SA) and test their efficacy on wheat seed exposed to chilling stress. BNCs developed were spherical (480 �� 6.0 nm), porous, and positively charged (+25.2 �� 2.4 mV) with regulated nutrient release properties. They possessed complexation efficiency of 78.4 and 58.9 % for Zn, and SA respectively. BET analysis further confirmed a surface area of 12.04 m/g. Release kinetics substantiated the release rates of Zn and SA, as 0.579 and 0.559 % per hour, along with a half-life of 119.7 and 124.0 h, respectively. BNCs positively affected the germination potential of wheat seeds under chilling stress as observed by significantly (p < 0.05) reduced mean emergence time (18 %), and increased germination rate (22 %), compared to the control. Higher activities of reserve mobilizing enzymes (��-amylase- 6.5 folds, protease -10.2 folds) as well as faster reserve mobilization of starch (64.4 %) and protein (63.5 %) molecules were also observed. The application further led to increased levels of the antioxidant enzymes (SOD and CAT) and reduced oxidative damage (MDA and HO). Thus, it is inferred that the developed BNCs could help substantially improve the germination and reserve mobilization potential, thereby increasing the crop yield.

Keywords

References

  1. Sci Rep. 2018 May 1;8(1):6832 [PMID: 29717180]
  2. J Nanobiotechnology. 2022 Jan 4;20(1):11 [PMID: 34983545]
  3. Int J Biol Macromol. 2019 Apr 15;127:126-135 [PMID: 30610949]
  4. Protoplasma. 2018 Jul;255(4):1179-1194 [PMID: 29453498]
  5. J Agric Food Chem. 2016 Aug 10;64(31):6148-55 [PMID: 27460439]
  6. Plant Physiol Biochem. 2021 Nov;168:272-281 [PMID: 34666280]
  7. Int J Biol Macromol. 2020 Feb 15;145:226-234 [PMID: 31866543]
  8. Front Plant Sci. 2021 Jul 08;12:676884 [PMID: 34305976]
  9. Plants (Basel). 2021 Jun 07;10(6): [PMID: 34200489]
  10. PLoS One. 2018 Jan 17;13(1):e0191035 [PMID: 29342185]
  11. Plant Physiol Biochem. 2019 Dec;145:64-74 [PMID: 31665668]
  12. Nanomaterials (Basel). 2020 Sep 24;10(10): [PMID: 32987697]
  13. Plant Sci. 2023 Nov;336:111834 [PMID: 37597666]
  14. Anal Biochem. 1971 Nov;44(1):276-87 [PMID: 4943714]
  15. Molecules. 2022 Apr 28;27(9): [PMID: 35566152]
  16. J Exp Bot. 2020 Jun 26;71(13):3780-3802 [PMID: 31970395]
  17. Saudi J Biol Sci. 2020 Aug;27(8):2010-2017 [PMID: 32714025]
  18. Int J Biol Macromol. 2021 Aug 31;185:832-848 [PMID: 34237361]
  19. Nanomaterials (Basel). 2021 Jan 20;11(2): [PMID: 33498531]
  20. Front Plant Sci. 2021 Sep 27;12:633651 [PMID: 34646280]
  21. Int J Biol Macromol. 2019 Feb 15;123:59-69 [PMID: 30389525]
  22. Plant Physiol Biochem. 2021 Mar;160:329-340 [PMID: 33548800]
  23. Int J Biol Macromol. 2015;77:36-51 [PMID: 25748851]
  24. Arch Biochem Biophys. 1968 Apr;125(1):189-98 [PMID: 5655425]
  25. Carbohydr Polym. 2021 Jun 1;261:117904 [PMID: 33766382]
  26. Colloids Surf B Biointerfaces. 2017 Feb 1;150:141-152 [PMID: 27914250]
  27. Plant Physiol Biochem. 2021 Mar;160:341-351 [PMID: 33548801]
  28. Carbohydr Polym. 2022 Jul 15;288:119356 [PMID: 35450625]
  29. Plant Physiol Biochem. 2021 May;162:699-705 [PMID: 33799181]
  30. Int J Biol Macromol. 2013 Nov;62:677-83 [PMID: 24141067]
  31. Int J Biol Macromol. 2018 Jul 1;113:494-506 [PMID: 29481952]
  32. Plant Cell Rep. 2022 Jan;41(1):1-31 [PMID: 34351488]
  33. PLoS One. 2020 Feb 28;15(2):e0229107 [PMID: 32109944]
  34. Sci Rep. 2019 May 9;9(1):7135 [PMID: 31073210]
  35. Funct Plant Biol. 2021 Aug;48(9):905-915 [PMID: 34366002]
  36. Arch Biochem Biophys. 1962 Mar;96:534-40 [PMID: 13912429]
  37. Plant Cell Rep. 2015 Aug;34(8):1281-93 [PMID: 25812837]
  38. Int J Biol Macromol. 2015 Apr;75:346-53 [PMID: 25617841]
  39. Polymers (Basel). 2021 Jun 13;13(12): [PMID: 34199209]
  40. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  41. Sci Technol Adv Mater. 2017 Jul 20;18(1):528-540 [PMID: 28804527]
  42. Nanoscale Res Lett. 2014 Jun 11;9(1):296 [PMID: 24994954]
  43. Int J Mol Sci. 2020 Nov 04;21(21): [PMID: 33158156]
  44. Anal Biochem. 1972 Jun;47(2):389-94 [PMID: 4556490]

Word Cloud

Created with Highcharts 10.0.0BNCsstressgerminationreserveZnSAwheatchillingmobilizationbionanoconjugatesseeddevelopedpositivelyreleaserespectivelyReleasekinetics0potentialobservedreducedincreasedenzymesfoldsstudyaimeddevelopcharacterizechitosanloadedzincsalicylicacidtestefficacyexposedspherical480 �� 60 nmporouscharged+252 �� 24 mVregulatednutrientpropertiespossessedcomplexationefficiency784589 %BETanalysisconfirmedsurfacearea1204 m/gsubstantiatedrates579559 %perhouralonghalf-life11971240 haffectedseedssignificantlyp < 005meanemergencetime18 %rate22 %comparedcontrolHigheractivitiesmobilizing��-amylase-65protease-102wellfasterstarch644 %protein635 %moleculesalsoapplicationledlevelsantioxidantSODCAToxidativedamageMDAHOThusinferredhelpsubstantiallyimprovetherebyincreasingcropyieldDevelopmentcharacterizationevaluationZn-SA-chitosanexperiencingBionanoconjugateChillingNanoprimingSeedVigourindex

Similar Articles

Cited By