Viral strategies to antagonize the host antiviral innate immunity: an indispensable research direction for emerging virus-host interactions.

Na Chen, Jiayu Jin, Baoge Zhang, Qi Meng, Yuanlu Lu, Bing Liang, Lulu Deng, Bingchen Qiao, Lucheng Zheng
Author Information
  1. Na Chen: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China. ORCID
  2. Jiayu Jin: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  3. Baoge Zhang: College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  4. Qi Meng: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  5. Yuanlu Lu: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  6. Bing Liang: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  7. Lulu Deng: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  8. Bingchen Qiao: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
  9. Lucheng Zheng: MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.

Abstract

The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.

Keywords

References

  1. Front Immunol. 2017 Jul 03;8:779 [PMID: 28717359]
  2. PLoS Negl Trop Dis. 2017 Jul 17;11(7):e0005775 [PMID: 28715409]
  3. J Virol. 2010 Sep;84(17):8433-45 [PMID: 20538852]
  4. Vet Microbiol. 2020 Nov;250:108838 [PMID: 33045633]
  5. J Med Virol. 2022 Feb;94(2):557-566 [PMID: 30968963]
  6. J Infect. 2013 Oct;67(4):329-41 [PMID: 23685241]
  7. EMBO Rep. 2016 Dec;17(12):1766-1775 [PMID: 27797853]
  8. Sci Signal. 2015 Dec 08;8(406):ra126 [PMID: 26645583]
  9. Signal Transduct Target Ther. 2021 Dec 17;6(1):430 [PMID: 34921135]
  10. PLoS Pathog. 2022 May 3;18(5):e1010505 [PMID: 35503798]
  11. J Mol Cell Biol. 2021 Dec 30;13(10):760-762 [PMID: 34687317]
  12. J Biol Chem. 2007 Nov 2;282(44):32208-21 [PMID: 17761676]
  13. Virology. 2007 Jun 20;363(1):236-43 [PMID: 17320139]
  14. Cell Discov. 2021 May 25;7(1):38 [PMID: 34035218]
  15. FASEB J. 2019 Sep;33(9):9929-9944 [PMID: 31180720]
  16. JCI Insight. 2017 Apr 6;2(7):e90443 [PMID: 28405612]
  17. Signal Transduct Target Ther. 2020 Oct 6;5(1):221 [PMID: 33024073]
  18. Front Microbiol. 2018 Jun 25;9:1350 [PMID: 29988497]
  19. J Virol. 2009 Sep;83(17):8993-7 [PMID: 19515768]
  20. mBio. 2021 Oct 26;12(5):e0233521 [PMID: 34544279]
  21. EBioMedicine. 2018 Apr;30:203-216 [PMID: 29580840]
  22. J Virol. 2016 Jul 27;90(16):7219-7230 [PMID: 27252539]
  23. Signal Transduct Target Ther. 2020 Dec 28;5(1):299 [PMID: 33372174]
  24. PLoS Pathog. 2012;8(10):e1002934 [PMID: 23055924]
  25. J Virol. 2007 Jan;81(2):514-24 [PMID: 17079289]
  26. Cell Microbiol. 2012 Dec;14(12):1849-66 [PMID: 22891964]
  27. Emerg Microbes Infect. 2016 Apr 20;5:e39 [PMID: 27094905]
  28. Nat Rev Immunol. 2022 Oct;22(10):597-613 [PMID: 36064780]
  29. Cell Host Microbe. 2013 Jul 17;14(1):74-84 [PMID: 23870315]
  30. Front Immunol. 2017 Sep 11;8:1051 [PMID: 28955326]
  31. Biomed Pharmacother. 2019 Mar;111:740-750 [PMID: 30611999]
  32. J Virol. 2020 Jun 16;94(13): [PMID: 32295922]
  33. J Virol. 2017 Mar 29;91(8): [PMID: 28148787]
  34. Front Immunol. 2020 Feb 14;11:51 [PMID: 32117232]
  35. J Virol. 2009 Apr;83(7):3069-77 [PMID: 19153231]
  36. Virology. 2019 Jan 15;527:180-187 [PMID: 30530224]
  37. Cell Mol Immunol. 2021 Apr;18(4):945-953 [PMID: 33637958]
  38. Cell Host Microbe. 2009 May 8;5(5):439-49 [PMID: 19454348]
  39. Protein Cell. 2020 Dec;11(12):894-914 [PMID: 32562145]
  40. Signal Transduct Target Ther. 2021 Mar 15;6(1):123 [PMID: 33723219]
  41. Viruses. 2019 Nov 04;11(11): [PMID: 31690057]
  42. PLoS Pathog. 2011 Jun;7(6):e1002067 [PMID: 21695240]
  43. PLoS One. 2013 May 21;8(5):e63852 [PMID: 23704945]
  44. J Biol Chem. 2009 Jun 12;284(24):16202-16209 [PMID: 19380580]
  45. Cell Mol Immunol. 2021 Mar;18(3):613-620 [PMID: 33110251]
  46. Cell Death Dis. 2015 Dec 17;6:e2018 [PMID: 26673663]
  47. iScience. 2022 Jun 15;25(7):104607 [PMID: 35800772]
  48. Cell Rep. 2020 Sep 22;32(12):108185 [PMID: 32941788]
  49. J Virol. 2019 Mar 21;93(7): [PMID: 30651365]
  50. iScience. 2021 Nov 19;24(11):103300 [PMID: 34746710]
  51. Cell Mol Immunol. 2022 Jan;19(1):108-121 [PMID: 34811497]
  52. Cell. 2013 Mar 28;153(1):112-25 [PMID: 23477864]
  53. Microbiol Spectr. 2023 Feb 27;:e0363722 [PMID: 36847523]
  54. Cell Discov. 2017 Mar 21;3:17006 [PMID: 28373913]
  55. PLoS Pathog. 2016 Oct 26;12(10):e1005982 [PMID: 27783669]
  56. Cell Mol Immunol. 2022 Jan;19(1):67-78 [PMID: 34845370]
  57. Virulence. 2021 Dec;12(1):1580-1596 [PMID: 34338586]
  58. J Immunol. 2020 Apr 1;204(7):1810-1824 [PMID: 32086387]
  59. PLoS One. 2021 Jun 24;16(6):e0253089 [PMID: 34166398]
  60. Science. 2013 Jul 26;341(6144):410-4 [PMID: 23868922]
  61. Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6310-E6318 [PMID: 29915078]
  62. Proc Natl Acad Sci U S A. 2021 Sep 7;118(36): [PMID: 34479996]
  63. Viruses. 2020 Dec 30;13(1): [PMID: 33396605]
  64. Virus Res. 2020 Sep;286:198074 [PMID: 32589897]
  65. J Virol. 2009 Jun;83(11):5408-18 [PMID: 19279106]
  66. J Virol. 2014 Aug;88(16):9038-48 [PMID: 24899174]
  67. Emerg Microbes Infect. 2022 Dec;11(1):1371-1389 [PMID: 35476817]
  68. Nat Commun. 2022 May 26;13(1):2935 [PMID: 35618710]
  69. Viruses. 2021 Jul 23;13(8): [PMID: 34452305]
  70. Cell Rep. 2021 Feb 16;34(7):108761 [PMID: 33567255]
  71. Front Immunol. 2021 May 18;12:662989 [PMID: 34084167]
  72. PLoS Pathog. 2021 Feb 12;17(2):e1009300 [PMID: 33577621]
  73. Nat Microbiol. 2017 Mar 27;2:17037 [PMID: 28346446]
  74. Sci Rep. 2015 Dec 03;5:17554 [PMID: 26631542]
  75. J Virol. 2019 Oct 15;93(21): [PMID: 31434735]
  76. Clin Microbiol Rev. 2021 May 12;34(3): [PMID: 33980688]
  77. Nucleic Acids Res. 2015 Dec 2;43(21):10321-37 [PMID: 26490959]
  78. Int J Biol Sci. 2021 Apr 10;17(6):1547-1554 [PMID: 33907518]
  79. Cell Discov. 2020 Sep 15;6:65 [PMID: 32953130]
  80. Virology. 2018 Feb;515:165-175 [PMID: 29294448]

MeSH Term

Humans
Immunity, Innate
SARS-CoV-2
Host-Pathogen Interactions
Virus Diseases
COVID-19
Animals
Communicable Diseases, Emerging

Word Cloud

Created with Highcharts 10.0.0hostinnatevirusesantiviralantagonizeimmunityemergingSARS-CoV-2strategiesresearchpathwaysregulationhealthcurrentMPXVstudiesshownhumanFurthermoremultiplevirus-hostinteractionsantagonismIAVindirectlyblockingimmunesignalingfactorsstressformationinterferonpublic'sgravelyriskdueglobaloutbreakspecificallyRecentmutantsOmicronexhibithighercapabilityincreasingadaptabilitytransmissibilitystillinitialstagesthreatsmakeurgentstudyespeciallyviralGivenselectedseveralrepresentativesignificantlythreatenedpublicinterpretedhopingprovideideasmolecularmechanismaccelerateprogressSARS-CoVMERS-CoVEBOVDENVZIKVHIVtypicalStudiesdirectlyProviralrestrictionncRNAsmicroRNAslncRNAscircRNAsvtRNAsessentialviacontrollingapoptosisERgranulemetabolicmayregulatorymechanismsincludetranscriptionalpost-translationalpreventingcompleximpedingnucleartranslocationcleavagedegradationepigeneticViralimmunity:indispensabledirectionEmergingproductionresponses

Similar Articles

Cited By