Evolution of connectivity architecture in the Drosophila mushroom body.

Kaitlyn Elizabeth Ellis, Sven Bervoets, Hayley Smihula, Ishani Ganguly, Eva Vigato, Thomas O Auer, Richard Benton, Ashok Litwin-Kumar, Sophie Jeanne C��cile Caron
Author Information
  1. Kaitlyn Elizabeth Ellis: School of Biological Sciences, University of Utah, Salt Lake City, USA.
  2. Sven Bervoets: School of Biological Sciences, University of Utah, Salt Lake City, USA. ORCID
  3. Hayley Smihula: School of Biological Sciences, University of Utah, Salt Lake City, USA. ORCID
  4. Ishani Ganguly: Center for Theoretical Neuroscience, Columbia University, New York, USA. ORCID
  5. Eva Vigato: School of Biological Sciences, University of Utah, Salt Lake City, USA. ORCID
  6. Thomas O Auer: Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. ORCID
  7. Richard Benton: Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. ORCID
  8. Ashok Litwin-Kumar: Center for Theoretical Neuroscience, Columbia University, New York, USA.
  9. Sophie Jeanne C��cile Caron: School of Biological Sciences, University of Utah, Salt Lake City, USA. sophie.caron@utah.edu. ORCID

Abstract

Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that, to our knowledge, has not been investigated in these species-the connections between projection neurons and the Kenyon cells of the mushroom body-and identify species-specific connectivity patterns. We found that neurons encoding food odors connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific connectivity differences reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.

References

  1. Naturwissenschaften. 2010 Dec;97(12):1059-66 [PMID: 20972770]
  2. Nat Neurosci. 2013 Dec;16(12):1821-9 [PMID: 24141312]
  3. Annu Rev Cell Dev Biol. 2021 Oct 6;37:495-517 [PMID: 34416113]
  4. Elife. 2020 Sep 07;9: [PMID: 32880371]
  5. Genetica. 2004 Mar;120(1-3):17-39 [PMID: 15088644]
  6. Elife. 2014 Dec 23;3:e04577 [PMID: 25535793]
  7. Genetics. 2007 Nov;177(3):1395-416 [PMID: 18039874]
  8. Cell. 2006 Apr 7;125(1):143-60 [PMID: 16615896]
  9. Cold Spring Harb Protoc. 2011 May 01;2011(5):pdb.prot5608 [PMID: 21536768]
  10. Nature. 2007 Nov 8;450(7167):203-18 [PMID: 17994087]
  11. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10713-8 [PMID: 20498080]
  12. Sci Rep. 2016 Feb 25;6:21841 [PMID: 26912260]
  13. Bioinformatics. 2011 Sep 1;27(17):2453-4 [PMID: 21727141]
  14. Elife. 2015 Jun 04;4: [PMID: 26041333]
  15. Nature. 2020 Mar;579(7799):402-408 [PMID: 32132713]
  16. Neuron. 2017 Mar 8;93(5):1153-1164.e7 [PMID: 28215558]
  17. Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9460-5 [PMID: 26150492]
  18. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1835-9 [PMID: 1900368]
  19. BMC Bioinformatics. 2017 May 26;18(1):280 [PMID: 28549411]
  20. Nature. 2010 Dec 2;468(7324):686-90 [PMID: 21124455]
  21. G3 (Bethesda). 2017 Apr 3;7(4):1339-1347 [PMID: 28280212]
  22. Nat Rev Neurosci. 2022 Dec;23(12):725-743 [PMID: 36289403]
  23. Neuron. 2017 Feb 8;93(3):661-676.e6 [PMID: 28111079]
  24. Curr Biol. 2022 Sep 26;32(18):4000-4012.e5 [PMID: 35977547]
  25. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 May;206(3):353-367 [PMID: 31984441]
  26. Elife. 2020 Dec 14;9: [PMID: 33315010]
  27. PLoS Genet. 2010 Aug 19;6(8):e1001064 [PMID: 20808886]
  28. Annu Rev Genet. 2021 Nov 23;55:527-554 [PMID: 34530638]
  29. Elife. 2014 Dec 09;3: [PMID: 25487989]
  30. Cell Rep. 2016 Sep 20;16(12):3401-3413 [PMID: 27653699]
  31. Sci Rep. 2017 Aug 18;7(1):8804 [PMID: 28821769]
  32. Elife. 2021 May 25;10: [PMID: 34032214]
  33. Curr Biol. 2005 Sep 6;15(17):1535-47 [PMID: 16139208]
  34. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  35. Curr Biol. 2005 Sep 6;15(17):1548-53 [PMID: 16139209]
  36. Cell. 2007 Mar 23;128(6):1187-203 [PMID: 17382886]
  37. Curr Biol. 2023 Nov 20;33(22):4771-4785.e7 [PMID: 37804828]
  38. Curr Biol. 2022 Aug 8;32(15):3334-3349.e6 [PMID: 35797998]
  39. Proc Biol Sci. 2003 Nov 22;270(1531):2333-40 [PMID: 14667348]
  40. STAR Protoc. 2021 Mar 06;2(1):100381 [PMID: 33733243]
  41. Nature. 2013 May 2;497(7447):113-7 [PMID: 23615618]
  42. J Neurosci. 2014 Mar 12;34(11):3959-68 [PMID: 24623773]
  43. Curr Biol. 2006 Jan 10;16(1):101-9 [PMID: 16401429]
  44. Neuron. 2020 Jun 17;106(6):977-991.e4 [PMID: 32289250]

Grants

  1. R01 EB029858/NIBIB NIH HHS
  2. R01 NS106018/NINDS NIH HHS
  3. T32 HD007491/NICHD NIH HHS
  4. R01 NS 1079790/U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

MeSH Term

Animals
Mushroom Bodies
Drosophila
Biological Evolution
Species Specificity
Neurons
Drosophila melanogaster
Phylogeny
Smell
Odorants
Olfactory Pathways
Male
Female
Presynaptic Terminals

Word Cloud

Created with Highcharts 10.0.0connectivityDrosophilaneuronsspeciesprojectionspecies-specificevolutionlevelbrainneuronalcircuitschangeolfactorychemicalKenyoncellsmushroomreflectnumberassociativearchitectureBrainprimarilystudiedmacroscopiccomparingrelativesizehomologouscenterscellularevolutionarytimeremainslargelyunansweredusingphylogeneticallyinformedframeworkcomparethreecloselyrelateddifferecology:generalistsmelanogastersimulanssechelliaspecializesripenonifruitexaminecentralpartcircuitknowledgeinvestigatedspecies-theconnectionsbody-andidentifypatternsfoundencodingfoododorsconnectfrequentlygivingrisebiasesdifferencestwodistinctphenotypes:presynapticboutonsformedindividualFinallybehavioralanalysessuggestincreasedenhanceslearningperformancetaskstudyshowsfine-grainedaspectscentercanecologyEvolutionbody

Similar Articles

Cited By