The pros and cons of nucleic acid-amplified immunoassays-a comparative study on the quantitation of prostate-specific antigen with and without rolling circle amplification.

Mariia Dekaliuk, Zden��k Farka, Niko Hildebrandt
Author Information
  1. Mariia Dekaliuk: Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Pozna��, Poland. mdekaliuk@ibch.poznan.pl.
  2. Zden��k Farka: Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
  3. Niko Hildebrandt: Laboratoire COBRA, CNRS, INSA Rouen, Universit�� de Rouen Normandie, Normandie Universit��, Rouen, France. hildebrandt@mcmaster.ca.

Abstract

Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).

Keywords

References

  1. Chem Rev. 2010 May 12;110(5):2729-55 [PMID: 20151630]
  2. Brain Res. 2020 Jul 15;1739:146861 [PMID: 32353434]
  3. Curr Protoc Immunol. 2015 Aug 03;110:2.1.1-2.1.23 [PMID: 26237010]
  4. Chem Sci. 2018 Sep 11;9(42):8046-8055 [PMID: 30542553]
  5. Acc Chem Res. 2022 Feb 15;55(4):551-564 [PMID: 35084817]
  6. Nat Protoc. 2007;2(8):1918-30 [PMID: 17703203]
  7. Anal Chim Acta. 2018 Jul 26;1015:74-81 [PMID: 29530254]
  8. Ann Clin Biochem. 2011 Jul;48(Pt 4):310-6 [PMID: 21525152]
  9. J Biomol Screen. 1999;4(6):301-302 [PMID: 10838425]
  10. Anal Chem. 2021 Jan 26;93(3):1842-1850 [PMID: 33356162]
  11. Analyst. 2021 May 7;146(9):2871-2877 [PMID: 33899835]
  12. Sensors (Basel). 2018 Jun 22;18(7): [PMID: 29932161]
  13. Analyst. 2014 Jan 21;139(2):439-45 [PMID: 24308031]
  14. Luminescence. 2021 Jun;36(4):842-848 [PMID: 33502072]
  15. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Sep;9(5): [PMID: 28220651]
  16. ACS Sens. 2019 Oct 25;4(10):2786-2793 [PMID: 31577130]
  17. J Immunoassay. 2000 May-Aug;21(2-3):165-209 [PMID: 10929886]
  18. J Fluoresc. 2015 Sep;25(5):1371-6 [PMID: 26250057]
  19. World J Urol. 2005 Sep;23(4):236-42 [PMID: 16096832]
  20. Clin Chem. 2017 Sep;63(9):1497-1505 [PMID: 28667186]
  21. Anal Chem. 2019 Aug 6;91(15):9435-9441 [PMID: 31246416]
  22. Anal Chim Acta. 2021 Mar 1;1148:238187 [PMID: 33516384]
  23. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10113-9 [PMID: 10954739]
  24. J Phys Chem Lett. 2018 Aug 2;9(15):4379-4384 [PMID: 30016106]
  25. Talanta. 2019 Nov 1;204:248-254 [PMID: 31357289]
  26. Anal Chim Acta. 2016 Mar 3;910:12-24 [PMID: 26873464]
  27. J Clin Med. 2021 Nov 07;10(21): [PMID: 34768717]
  28. Biochem Biophys Res Commun. 2003 Aug 22;308(2):240-50 [PMID: 12901860]
  29. Nat Biomed Eng. 2020 Dec;4(12):1180-1187 [PMID: 32948854]
  30. J Urol. 2013 Jan;189(1 Suppl):S2-S11 [PMID: 23234625]

Grants

  1. H2020-MSCA-COFUND-2018/HORIZON EUROPE Marie Sklodowska-Curie Actions
  2. 22-27580S/Grantov�� Agentura ��esk�� Republiky
  3. CERC-2022-0007/Canada Excellence Research Chairs, Government of Canada

MeSH Term

Prostate-Specific Antigen
Nucleic Acid Amplification Techniques
Immunoassay
Humans
Limit of Detection
Male
Fluorescence Resonance Energy Transfer

Chemicals

Prostate-Specific Antigen

Word Cloud

Created with Highcharts 10.0.0assaysamplificationdetectionLODsassayPSARCAusinglowerisothermalnucleicimmunoassaysanalyticaltimeformatprosconsheterogeneousprostate-specificantigenwithoutrollingcircleTGPLdirectprovidedimportancebackgroundsuppressionevenhigherIntegratingacidstrategiescansignificantlydecreaselimitshandstepaddscomplicationreagentscostsevaluatecontextmultistepquantifiedadditioncomparedtime-gatedcontinuous-waveCWphotoluminescenceterbiumcomplexfluoresceindyerespectivelynon-amplifiedamplifiedcircafour-eightfoldillustratingautofluorescencemulti-washformatsAmplifiedrequiredapproximately24 hlongerledalmost100-fold13 pg/mLImplementationTG-FRETTb-Cy55donor-acceptorpairimmunoassayresultedslightlyLOD30 pg/mLratiometricimportantbenefitsreproducibilitystandarddeviationsmultiplexingcapabilityOverallcomparisondemonstratedbiologicalpotentialstronglydecreasingmakingviablealternativesconventionalenzyme-linkedimmunosorbentELISAsacid-amplifiedimmunoassays-acomparativestudyquantitationDiagnosticsELISAFluorescenceTR-FRETTerbium

Similar Articles

Cited By