C.I. Acid Black 1 transfer from dilute solution to perlite framework in organic waste management.

Maria Roulia, Alexandros A Vassiliadis
Author Information
  1. Maria Roulia: Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71, Athens, Greece. roulia@chem.uoa.gr.
  2. Alexandros A Vassiliadis: Dyeing, Finishing, Dyestuffs and Advanced Polymers Laboratory, DIDPE, University of West Attica, 250 Thivon St., 122 41, Athens, Greece. alex.a.vass@uniwa.gr.

Abstract

Dyes, considered as toxic and persistent pollutants, must be removed from organic wastes prior to their composting and application in sustainable agriculture. Azo dyes, capable of altering the physicochemical properties of soil, are difficult to expel by conventional wastewater treatments. C.I. Acid Black 1 (AB 1), a sulfonated azo dye, inhibits nitrification and ammonification in the soil, lessens the nitrogen use efficacy in crop production and passes substantially unaltered through an activated sludge process. The retention of C.I. Acid Black 1 by raw and expanded perlite was investigated in order to examine the potential effectiveness of this aluminosilicate material toward organic waste cleanup. Dye adsorption proved spontaneous and endothermic in nature, increasing with temperature for both perlites. Expanded perlite having a more open structure exhibited a better performance compared to the raw material. Several of the most widely recognized two-parameter theoretical models, i.e., Langmuir, Freundlich, Temkin, Brunauer-Emmett-Teller (BET), Harkins-Jura, Halsey, Henderson, and Smith, were applied to reveal physicochemical features characterizing the adsorption. The Langmuir, Freundlich, Temkin, BET, Henderson, and Smith equations best fitted experimental data indicating that the adsorption of anionic dye on perlites is controlled by their surface, i.e., non-uniformity in structure and charge. This heterogeneity of surface is considered responsible for promoting specific dye adsorption areas creating dye "islands" with local dye supersaturations.

Keywords

References

  1. Int J Biol Macromol. 2015 Jan;72:1129-35 [PMID: 25453286]
  2. Ecotoxicol Environ Saf. 2015 Oct;120:163-8 [PMID: 26074308]
  3. Environ Sci Pollut Res Int. 2024 Feb;31(9):12748-12779 [PMID: 38265587]
  4. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2019;54(11):1099-1108 [PMID: 31244375]
  5. J Microsc. 2005 Oct;220(Pt 1):31-5 [PMID: 16269061]
  6. J Am Chem Soc. 1947 Mar;69(3):651-7 [PMID: 20289451]
  7. Int J Biol Macromol. 2021 Apr 30;177:306-316 [PMID: 33621567]
  8. Nat Commun. 2013;4:2344 [PMID: 23949115]
  9. Chemosphere. 2011 Mar;82(10):1367-72 [PMID: 21176940]
  10. RSC Adv. 2019 Jan 23;9(6):2978-2996 [PMID: 35518966]
  11. Environ Technol. 2004 Sep;25(9):987-96 [PMID: 15515265]
  12. Water Res. 2005 Jan;39(1):17-28 [PMID: 15607160]
  13. Chemosphere. 2024 Feb;349:140801 [PMID: 38029934]
  14. J Hazard Mater. 2010 Sep 15;181(1-3):335-42 [PMID: 20570045]
  15. Bull Environ Contam Toxicol. 2001 Jun;66(6):784-93 [PMID: 11353382]
  16. Materials (Basel). 2022 Jun 24;15(13): [PMID: 35806596]
  17. Inorg Chem. 2018 Sep 17;57(18):11443-11455 [PMID: 30160103]
  18. Bioresour Technol. 2011 Jul;102(14):7218-23 [PMID: 21571528]
  19. Carbohydr Polym. 2015 Jan 22;115:686-93 [PMID: 25439949]
  20. ACS Appl Bio Mater. 2018 Dec 17;1(6):1959-1971 [PMID: 34996258]
  21. Sci Rep. 2021 Dec 8;11(1):23624 [PMID: 34880393]
  22. Sci Rep. 2019 May 14;9(1):7347 [PMID: 31089146]
  23. J Environ Manage. 2017 Dec 1;203(Pt 2):670-678 [PMID: 27495009]
  24. J Colloid Interface Sci. 2005 Nov 1;291(1):37-44 [PMID: 15990108]

MeSH Term

Aluminum Oxide
Adsorption
Silicon Dioxide
Coloring Agents
Naphthalenesulfonates
Waste Management
Azo Compounds
Anthraquinones

Chemicals

Perlite
Aluminum Oxide
Silicon Dioxide
Coloring Agents
Naphthalenesulfonates
1-amino-9,10-dihydro-9,10-dioxo-4-(phenylamino)-2-anthracenesulfonic acid
Azo Compounds
Anthraquinones

Word Cloud

Created with Highcharts 10.0.01dyeCIAcidBlackadsorptionorganicperliteconsideredphysicochemicalsoilrawmaterialwasteperlitesstructureieLangmuirFreundlichTemkinBETHendersonSmithsurfaceDyestoxicpersistentpollutantsmustremovedwastespriorcompostingapplicationsustainableagricultureAzodyescapablealteringpropertiesdifficultexpelconventionalwastewatertreatmentsABsulfonatedazoinhibitsnitrificationammonificationlessensnitrogenuseefficacycropproductionpassessubstantiallyunalteredactivatedsludgeprocessretentionexpandedinvestigatedorderexaminepotentialeffectivenessaluminosilicatetowardcleanupDyeprovedspontaneousendothermicnatureincreasingtemperatureExpandedopenexhibitedbetterperformancecomparedSeveralwidelyrecognizedtwo-parametertheoreticalmodelsBrunauer-Emmett-TellerHarkins-JuraHalseyappliedrevealfeaturescharacterizingequationsbestfittedexperimentaldataindicatinganioniccontrollednon-uniformitychargeheterogeneityresponsiblepromotingspecificareascreating"islands"localsupersaturationstransferdilutesolutionframeworkmanagementAdsorptionDye-contaminatedlandHydrophobic–hydrophilicsitesIsothermsPerliteSoilchemistry

Similar Articles

Cited By

No available data.