Artificial sensory system based on memristive devices.

Ju Young Kwon, Ji Eun Kim, Jong Sung Kim, Suk Yeop Chun, Keunho Soh, Jung Ho Yoon
Author Information
  1. Ju Young Kwon: Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea.
  2. Ji Eun Kim: Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea.
  3. Jong Sung Kim: Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea.
  4. Suk Yeop Chun: Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea.
  5. Keunho Soh: Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea.
  6. Jung Ho Yoon: Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea. ORCID

Abstract

In the biological nervous system, the integration and cooperation of parallel system of receptors, neurons, and synapses allow efficient detection and processing of intricate and disordered external information. Such systems acquire and process environmental data in real-time, efficiently handling complex tasks with minimal energy consumption. Memristors can mimic typical biological receptors, neurons, and synapses by implementing key features of neuronal signal-processing functions such as selective adaption in receptors, leaky integrate-and-fire in neurons, and synaptic plasticity in synapses. External stimuli are sensitively detected and filtered by "artificial receptors," encoded into spike signals via "artificial neurons," and integrated and stored through "artificial synapses." The high operational speed, low power consumption, and superior scalability of memristive devices make their integration with high-performance sensors a promising approach for creating integrated artificial sensory systems. These integrated systems can extract useful data from a large volume of raw data, facilitating real-time detection and processing of environmental information. This review explores the recent advances in memristor-based artificial sensory systems. The authors begin with the requirements of artificial sensory elements and then present an in-depth review of such elements demonstrated by memristive devices. Finally, the major challenges and opportunities in the development of memristor-based artificial sensory systems are discussed.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4722-7 [PMID: 20167805]
  2. Adv Mater. 2008 Jul 17;20(14):2760-5 [PMID: 25213903]
  3. Adv Sci (Weinh). 2021 Jul;8(14):e2100230 [PMID: 34037331]
  4. Nat Commun. 2018 Jan 29;9(1):417 [PMID: 29379008]
  5. Adv Mater. 2019 Aug;31(34):e1803637 [PMID: 30345558]
  6. ACS Appl Mater Interfaces. 2022 Jun 29;14(25):29025-29031 [PMID: 35700145]
  7. Small. 2017 Sep;13(35): [PMID: 28234422]
  8. Physiol Rev. 2009 Apr;89(2):707-58 [PMID: 19342617]
  9. Micromachines (Basel). 2023 Jan 17;14(2): [PMID: 36837935]
  10. PLoS Comput Biol. 2022 Dec 2;18(12):e1010682 [PMID: 36459503]
  11. iScience. 2020 Dec 03;24(1):101889 [PMID: 33458606]
  12. Front Neurosci. 2021 Mar 26;15:639526 [PMID: 33841082]
  13. Adv Mater. 2022 Jun;34(24):e2201608 [PMID: 35436369]
  14. Adv Mater. 2023 Sep;35(37):e2205047 [PMID: 36609920]
  15. Sci Adv. 2022 Jan 21;8(3):eabj7866 [PMID: 35061541]
  16. Nat Commun. 2014 Jun 23;5:4232 [PMID: 24953477]
  17. Adv Mater. 2020 Feb;32(8):e1906269 [PMID: 31840337]
  18. Annu Rev Cell Dev Biol. 2008;24:183-209 [PMID: 18616423]
  19. Nature. 2013 May 2;497(7447):95-9 [PMID: 23636401]
  20. ACS Appl Mater Interfaces. 2020 Jul 15;12(28):32131-32142 [PMID: 32551480]
  21. Nat Commun. 2020 Sep 15;11(1):4636 [PMID: 32934210]
  22. Biophys Rev. 2017 Oct;9(5):847-856 [PMID: 28889335]
  23. Nat Rev Neurosci. 2011 Mar;12(3):139-53 [PMID: 21304548]
  24. Nat Commun. 2022 Jul 12;13(1):4040 [PMID: 35831304]
  25. Exploration (Beijing). 2023 Nov 20;4(1):20220162 [PMID: 38854486]
  26. Front Synaptic Neurosci. 2013 Oct 17;5:8 [PMID: 24146648]
  27. Nat Commun. 2022 Jul 8;13(1):3973 [PMID: 35803938]
  28. Small. 2022 Apr;18(16):e2200185 [PMID: 35218611]
  29. Sci Rep. 2016 Jan 04;6:18639 [PMID: 26725838]
  30. Nature. 2020 Jan;577(7792):641-646 [PMID: 31996818]
  31. Faraday Discuss. 2019 Feb 18;213(0):421-451 [PMID: 30426118]
  32. ACS Nano. 2022 Nov 22;16(11):19155-19164 [PMID: 36269153]
  33. Nanoscale. 2019 Apr 4;11(14):6591-6601 [PMID: 30656324]
  34. ACS Nano. 2021 Oct 26;15(10):16422-16431 [PMID: 34597014]
  35. Adv Sci (Weinh). 2022 May;9(15):e2200629 [PMID: 35338600]
  36. Adv Sci (Weinh). 2019 Apr 02;6(10):1900024 [PMID: 31131198]
  37. Annu Rev Neurosci. 2009;32:1-32 [PMID: 19400724]
  38. FEBS J. 2022 Apr;289(8):2176-2201 [PMID: 34109726]
  39. Front Neurosci. 2013 Feb 18;7:2 [PMID: 23423540]
  40. ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5495-5503 [PMID: 36691225]
  41. Annu Rev Neurosci. 2018 Jul 8;41:299-322 [PMID: 29709205]
  42. Int J Biometeorol. 2020 Dec;64(12):2007-2017 [PMID: 32820392]
  43. ACS Nano. 2021 Nov 23;15(11):17319-17326 [PMID: 34541840]
  44. Adv Mater. 2023 Sep;35(37):e2204844 [PMID: 35917248]
  45. Neural Netw. 2018 Jul;103:118-127 [PMID: 29674234]
  46. Neural Comput. 2015 Jul;27(7):1461-95 [PMID: 25973548]
  47. Faraday Discuss. 2019 Feb 18;213(0):197-213 [PMID: 30357198]
  48. Science. 1964 May 1;144(3618):554-5 [PMID: 14194104]
  49. Phys Rev Lett. 2014 Aug 22;113(8):086404 [PMID: 25192113]
  50. J Neurosci. 1998 Dec 15;18(24):10464-72 [PMID: 9852584]
  51. Nanotechnology. 2019 Jul 25;30(44):445205 [PMID: 31341103]
  52. Nanoscale. 2021 Apr 7;13(13):6654-6660 [PMID: 33885544]
  53. ACS Appl Mater Interfaces. 2017 Oct 4;9(39):34064-34070 [PMID: 28901743]
  54. Nat Commun. 2014 Jul 24;5:4289 [PMID: 25056141]
  55. J Phys Chem Lett. 2022 May 5;13(17):3789-3795 [PMID: 35451841]
  56. Sci Rep. 2022 Apr 28;12(1):6571 [PMID: 35484180]
  57. Nano Lett. 2019 Feb 13;19(2):839-849 [PMID: 30608706]
  58. Front Neurosci. 2018 Jun 08;12:322 [PMID: 29937707]
  59. J Neurosci. 2013 Jun 5;33(23):9725-33 [PMID: 23739969]
  60. Small. 2020 Oct;16(41):e2003225 [PMID: 32945139]
  61. Nat Mater. 2019 Apr;18(4):309-323 [PMID: 30894760]
  62. Neuropsychopharmacology. 2008 Jan;33(1):18-41 [PMID: 17728696]
  63. Nat Commun. 2020 Apr 20;11(1):1861 [PMID: 32313096]
  64. Nano Lett. 2013 Jul 10;13(7):3213-7 [PMID: 23746124]
  65. Nat Mater. 2018 Apr;17(4):335-340 [PMID: 29358642]
  66. Nano Lett. 2022 Jan 26;22(2):733-739 [PMID: 35025519]
  67. Nature. 2020 Sep;585(7826):518-523 [PMID: 32968256]
  68. Nat Commun. 2020 Jan 2;11(1):51 [PMID: 31896758]
  69. Materials (Basel). 2020 Jan 01;13(1): [PMID: 31906325]
  70. Nat Commun. 2018 Dec 4;9(1):5151 [PMID: 30514894]
  71. Int J Mol Sci. 2019 Dec 08;20(24): [PMID: 31817968]
  72. J Neurophysiol. 2020 Oct 1;124(4):1229-1240 [PMID: 32965159]
  73. J Neural Eng. 2018 Aug;15(4):046002 [PMID: 29551756]
  74. Nat Mater. 2019 May;18(5):510-517 [PMID: 30804509]
  75. Sci Adv. 2021 Sep 03;7(36):eabg3788 [PMID: 34516897]
  76. Adv Mater. 2020 Mar;32(9):e1904599 [PMID: 31984587]
  77. Science. 1997 Jan 10;275(5297):209-13 [PMID: 8985013]
  78. Adv Mater. 2020 Apr;32(15):e1902434 [PMID: 31364219]
  79. Nano Lett. 2023 Jun 14;23(11):5399-5407 [PMID: 36930534]
  80. Science. 2021 Sep 17;373(6561):1353-1358 [PMID: 34413170]
  81. Curr Biol. 1996 Apr 1;6(4):375-8 [PMID: 8723336]
  82. Nanoscale Res Lett. 2014 Nov 23;9(1):629 [PMID: 25489283]
  83. Nat Commun. 2020 Mar 13;11(1):1369 [PMID: 32170075]
  84. Materials (Basel). 2018 Oct 26;11(11): [PMID: 30373122]
  85. Nanoscale. 2021 Jul 8;13(26):11370-11379 [PMID: 34160528]
  86. Sci Adv. 2018 Sep 12;4(9):eaat4752 [PMID: 30214936]
  87. Small. 2016 Nov;12(44):6167-6174 [PMID: 27671374]
  88. Adv Mater. 2020 Jan;32(4):e1905399 [PMID: 31803996]
  89. Adv Mater. 2018 Jul 3;:e1802516 [PMID: 29971867]
  90. Nanotechnology. 2019 Aug 30;30(35):352003 [PMID: 31071689]
  91. Nat Commun. 2013;4:1771 [PMID: 23612312]
  92. Adv Sci (Weinh). 2022 Feb;9(5):e2104107 [PMID: 34913617]
  93. Elife. 2021 Apr 16;10: [PMID: 33860763]
  94. Nano Lett. 2020 Nov 11;20(11):8015-8023 [PMID: 33063511]
  95. Adv Sci (Weinh). 2022 Feb;9(4):e2103484 [PMID: 34837480]
  96. Nat Comput Sci. 2022 Jan;2(1):10-19 [PMID: 38177712]
  97. IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14519-14533 [PMID: 37279127]
  98. Nat Mater. 2013 Oct;12(10):899-904 [PMID: 23872732]
  99. ACS Nano. 2021 Mar 23;15(3):3875-3899 [PMID: 33507725]
  100. IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):4039-4051 [PMID: 32841127]
  101. Front Synaptic Neurosci. 2018 Oct 30;10:33 [PMID: 30425632]
  102. Adv Mater. 2018 Jul;30(30):e1801291 [PMID: 29882255]
  103. Adv Mater. 2016 Feb 24;28(8):1559-66 [PMID: 26676965]
  104. Nanomaterials (Basel). 2021 Oct 27;11(11): [PMID: 34835625]
  105. Front Comput Neurosci. 2010 Dec 31;4:156 [PMID: 21228915]
  106. Science. 1997 Jan 10;275(5297):213-5 [PMID: 8985014]
  107. Nature. 2014 May 29;509(7502):617-21 [PMID: 24717432]
  108. Nature. 2018 Jun;558(7708):60-67 [PMID: 29875487]
  109. Nat Commun. 2021 Apr 9;12(1):2143 [PMID: 33837210]
  110. ACS Appl Mater Interfaces. 2021 Apr 21;13(15):18365-18371 [PMID: 33832220]
  111. Glob Chall. 2019 Aug 07;3(11):1900015 [PMID: 31692992]
  112. Adv Mater. 2021 Aug;33(32):e2102435 [PMID: 34219298]
  113. Nat Rev Neurosci. 2007 Jun;8(6):451-65 [PMID: 17514198]
  114. Nat Nanotechnol. 2015 Mar;10(3):191-4 [PMID: 25740127]
  115. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16610-5 [PMID: 24062464]
  116. Nature. 2007 Feb 22;445(7130):858-65 [PMID: 17314972]
  117. Nanoscale. 2020 Jan 23;12(3):1484-1494 [PMID: 31909402]
  118. Front Neurosci. 2022 Oct 03;16:982850 [PMID: 36263363]
  119. Adv Mater. 2018 Feb;30(8): [PMID: 29318678]
  120. Mol Psychiatry. 2023 Jun;28(6):2177-2188 [PMID: 36991134]
  121. ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44550-44560 [PMID: 36149315]
  122. Nanoscale. 2016 Aug 7;8(29):13828-37 [PMID: 27150952]
  123. Front Comput Neurosci. 2010 Jul 01;4: [PMID: 20725599]
  124. J Pharm Biomed Anal. 2000 Jun;22(5):717-27 [PMID: 10815714]
  125. ACS Nano. 2008 Nov 25;2(11):2206-12 [PMID: 19206384]
  126. Nat Commun. 2020 Sep 14;11(1):4595 [PMID: 32929064]
  127. Prog Brain Res. 1994;102:227-43 [PMID: 7800815]
  128. ACS Nano. 2014 Mar 25;8(3):2369-76 [PMID: 24571386]
  129. Sci Rep. 2013;3:1619 [PMID: 23563810]
  130. Adv Mater. 2014 Jun 18;26(23):3885-92 [PMID: 24668899]
  131. ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40420-40427 [PMID: 29086551]
  132. Adv Mater. 2011 Sep 1;23(33):3847-52 [PMID: 24737180]
  133. Nat Neurosci. 2023 Feb;26(2):339-349 [PMID: 36635497]
  134. Adv Mater. 2020 Dec;32(52):e2003610 [PMID: 33165986]
  135. ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44561-44571 [PMID: 36164762]
  136. Nat Commun. 2012 Mar 13;3:732 [PMID: 22415823]
  137. Nanomicro Lett. 2022 Feb 5;14(1):58 [PMID: 35122527]
  138. ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39641-39651 [PMID: 34374517]
  139. Adv Mater. 2020 Aug;32(31):e2000218 [PMID: 32500602]
  140. Adv Mater. 2019 Dec;31(49):e1902761 [PMID: 31550405]
  141. Nat Commun. 2021 Aug 31;12(1):5198 [PMID: 34465783]
  142. J Clin Invest. 2010 Nov;120(11):3760-72 [PMID: 21041958]
  143. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  144. Nat Commun. 2021 Jan 18;12(1):408 [PMID: 33462233]
  145. Neural Netw. 2001 Jul-Sep;14(6-7):883-94 [PMID: 11665779]
  146. Adv Sci (Weinh). 2022 Aug;9(22):e2201117 [PMID: 35666073]
  147. Nat Commun. 2022 Jun 3;13(1):2888 [PMID: 35660724]
  148. Nat Commun. 2016 Jul 19;7:12172 [PMID: 27434854]
  149. Nat Rev Neurosci. 2009 May;10(5):345-59 [PMID: 19352402]
  150. Nat Mater. 2012 Apr 29;11(6):530-5 [PMID: 22543299]
  151. Nanomicro Lett. 2023 Mar 21;15(1):69 [PMID: 36943534]
  152. ACS Nano. 2022 Jun 28;16(6):9691-9700 [PMID: 35587990]
  153. Sensors (Basel). 2017 Nov 10;17(11): [PMID: 29125586]
  154. Nat Rev Neurosci. 2002 Aug;3(8):655-66 [PMID: 12154366]
  155. Neuron. 2013 Aug 21;79(4):618-39 [PMID: 23972592]
  156. Nature. 2011 Apr 14;472(7342):213-6 [PMID: 21451525]
  157. Cold Spring Harb Perspect Biol. 2013 Dec 30;8(2):a016824 [PMID: 24379319]
  158. ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12862-12869 [PMID: 29617112]
  159. Neural Comput. 2021 Sep 16;33(10):2682-2709 [PMID: 34530452]
  160. Nat Nanotechnol. 2013 Jan;8(1):13-24 [PMID: 23269430]

Word Cloud

Created with Highcharts 10.0.0artificialsensorysystemssystemreceptorsneuronssynapsesdata"artificial"integratedmemristivedevicesbiologicalintegrationdetectionprocessinginformationenvironmentalreal-timeconsumptioncanreviewmemristor-basedelementsnervouscooperationparallelallowefficientintricatedisorderedexternalacquireprocessefficientlyhandlingcomplextasksminimalenergyMemristorsmimictypicalimplementingkeyfeaturesneuronalsignal-processingfunctionsselectiveadaptionleakyintegrate-and-firesynapticplasticityExternalstimulisensitivelydetectedfilteredencodedspikesignalsviastoredhighoperationalspeedlowpowersuperiorscalabilitymakehigh-performancesensorspromisingapproachcreatingextractusefullargevolumerawfacilitatingexploresrecentadvancesauthorsbeginrequirementspresentin-depthdemonstratedFinallymajorchallengesopportunitiesdevelopmentdiscussedArtificialbasedneuronreceptorsynapsememristor

Similar Articles

Cited By (2)