Exploration of morpholine-thiophene hybrid thiosemicarbazones for the treatment of ureolytic bacterial infections via targeting urease enzyme: Synthesis, biochemical screening and computational analysis.

Rubina Munir, Sumera Zaib, Muhammad Zia-Ur-Rehman, Hira Javed, Ayesha Roohi, Muhammad Zaheer, Nabiha Fatima, Mashooq Ahmad Bhat, Imtiaz Khan
Author Information
  1. Rubina Munir: Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan.
  2. Sumera Zaib: Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
  3. Muhammad Zia-Ur-Rehman: Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan.
  4. Hira Javed: Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
  5. Ayesha Roohi: Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan.
  6. Muhammad Zaheer: Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan.
  7. Nabiha Fatima: Department of Chemistry, Kinnaird College for Women, Lahore, Pakistan.
  8. Mashooq Ahmad Bhat: Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  9. Imtiaz Khan: Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.

Abstract

An important component of the pathogenicity of potentially pathogenic bacteria in humans is the urease enzyme. In order to avoid the detrimental impact of ureolytic bacterial infections, the inhibition of urease enzyme appears to be an appealing approach. Therefore, in the current study, morpholine-thiophene hybrid thiosemicarbazone derivatives () were designed, synthesized and characterized through FTIR, H NMR, C NMR spectroscopy and mass spectrometry. A range of substituents including electron-rich, electron-deficient and inductively electron-withdrawing groups on the thiophene ring was successfully tolerated. The synthesized derivatives were evaluated for their potential to inhibit urease enzyme using the indophenol method. The majority of compounds were noticeably more potent than the conventional inhibitor, thiourea. The lead inhibitor, 2-(1-(5-chlorothiophen-2-yl)ethylidene)--(2-morpholinoethyl)hydrazinecarbothioamide () inhibited the urease in an uncompetitive manner with an IC value of 3.80 ± 1.9 µM. The findings of the docking studies demonstrated that compound has a strong affinity for the urease active site. Significant docking scores and efficient binding free energies were displayed by the lead inhibitor. Finally, the ADME properties of lead inhibitor () suggested the druglikeness behavior with zero violation.

Keywords

References

  1. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W271-6 [PMID: 24771341]
  2. ACS Omega. 2023 Oct 04;8(41):38641-38657 [PMID: 37867693]
  3. Bioorg Chem. 2024 May;146:107247 [PMID: 38493635]
  4. J Enzyme Inhib Med Chem. 2023 Dec;38(1):361-375 [PMID: 36446640]
  5. BMC Chem. 2019 Apr 01;13(1):45 [PMID: 31384793]
  6. Nucleic Acids Res. 2022 Jul 5;50(W1):W115-W123 [PMID: 35536252]
  7. Bioorg Chem. 2020 Mar;96:103578 [PMID: 31978684]
  8. Sci Rep. 2020 May 22;10(1):8503 [PMID: 32444844]
  9. Bioorg Med Chem. 2016 Sep 15;24(18):4452-4463 [PMID: 27480030]
  10. Int Immunopharmacol. 2024 Jan 5;126:111259 [PMID: 37992446]
  11. Microbiol Rev. 1989 Mar;53(1):85-108 [PMID: 2651866]
  12. Curr Med Chem. 2002 Jul;9(14):1323-48 [PMID: 12132990]
  13. J Inorg Biochem. 2021 Dec;225:111620 [PMID: 34619407]
  14. Eur J Med Chem. 2018 Jan 20;144:359-371 [PMID: 29287249]
  15. ACS Med Chem Lett. 2010 May 10;1(4):145-9 [PMID: 24900188]
  16. Biomedicines. 2021 Oct 01;9(10): [PMID: 34680491]
  17. Expert Opin Ther Pat. 2019 Mar;29(3):181-189 [PMID: 30776929]
  18. Int J Mol Sci. 2024 Feb 06;25(4): [PMID: 38396647]
  19. Front Pharmacol. 2017 Dec 04;8:889 [PMID: 29255418]
  20. Molecules. 2023 Jan 12;28(2): [PMID: 36677832]
  21. Arch Pharm (Weinheim). 2013 Jun;346(6):423-46 [PMID: 23712847]
  22. Bioorg Chem. 2019 Jun;87:155-162 [PMID: 30884309]
  23. Front Pharmacol. 2022 Sep 27;13:1018951 [PMID: 36238553]
  24. Res Pharm Sci. 2020 Jul 03;15(3):281-290 [PMID: 33088328]
  25. Acc Chem Res. 2011 Jul 19;44(7):520-30 [PMID: 21542631]
  26. Eur J Med Chem. 2019 Dec 15;184:111764 [PMID: 31614257]
  27. Mol Divers. 2006 May;10(2):223-31 [PMID: 16710811]
  28. Arch Pharm (Weinheim). 2023 Nov;356(11):e2300336 [PMID: 37612782]
  29. Arch Pharm (Weinheim). 2023 Sep;356(9):e2300252 [PMID: 37401193]
  30. Materials (Basel). 2022 Aug 11;15(16): [PMID: 36013649]
  31. J Adv Res. 2018 May 04;13:69-100 [PMID: 30094084]
  32. Mol Divers. 2024 Apr;28(2):475-496 [PMID: 36622482]
  33. R Soc Open Sci. 2023 Apr 5;10(4):230104 [PMID: 37035287]
  34. J Chem Inf Model. 2020 Mar 23;60(3):1146-1164 [PMID: 32040319]
  35. J Enzyme Inhib. 2001 Dec;16(6):507-16 [PMID: 12164390]
  36. RSC Adv. 2023 Jan 23;13(5):3210-3233 [PMID: 36756398]
  37. J Biomol Struct Dyn. 2023 Dec 28;:1-10 [PMID: 38153364]
  38. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  39. Arch Microbiol. 2023 Aug 7;205(9):301 [PMID: 37550555]
  40. Bioinformatics. 2019 Mar 15;35(6):1067-1069 [PMID: 30165565]
  41. Curr Protein Pept Sci. 2012 Dec;13(8):789-806 [PMID: 23305365]
  42. Molecules. 2017 Oct 11;22(10): [PMID: 29019930]
  43. Z Naturforsch C J Biosci. 2024 Apr 19;: [PMID: 38635830]
  44. Mini Rev Med Chem. 2019;19(7):569-590 [PMID: 30324878]
  45. J Enzyme Inhib Med Chem. 2006 Oct;21(5):527-9 [PMID: 17194022]
  46. J Mol Biol. 2010 Jul 16;400(3):274-83 [PMID: 20471401]
  47. Med Chem Res. 2013 Aug;22(8):3629-3639 [PMID: 23807823]
  48. Struct Chem. 2022;33(5):1755-1769 [PMID: 35966763]
  49. Bioorg Med Chem. 2019 Nov 15;27(22):115123 [PMID: 31623971]
  50. J Adv Res. 2018 Jan 31;13:101-112 [PMID: 30094085]
  51. Eur J Med Chem. 2013 Oct;68:212-21 [PMID: 23974021]
  52. Mol Divers. 2021 Feb;25(1):13-27 [PMID: 31916112]
  53. Bioorg Med Chem Lett. 2017 Jul 1;27(13):3014-3018 [PMID: 28526368]
  54. J Mol Graph Model. 2010 Jun;28(8):792-8 [PMID: 20338793]
  55. J Antibiot (Tokyo). 2019 Apr;72(4):218-224 [PMID: 30662064]
  56. Bioorg Chem. 2023 Oct;139:106739 [PMID: 37478545]
  57. RSC Adv. 2024 Jan 2;14(2):1018-1033 [PMID: 38174269]
  58. Front Chem. 2024 Mar 13;12:1371377 [PMID: 38545466]
  59. Molecules. 2020 Mar 06;25(5): [PMID: 32155763]
  60. Bioorg Med Chem. 2024 Mar 15;102:117656 [PMID: 38422567]

Word Cloud

Created with Highcharts 10.0.0ureaseinhibitorenzymeleadureolyticbacterialinfectionsmorpholine-thiophenehybridthiosemicarbazonederivativessynthesizedNMRthiophenedockingbindingimportantcomponentpathogenicitypotentiallypathogenicbacteriahumansorderavoiddetrimentalimpactinhibitionappearsappealingapproachThereforecurrentstudydesignedcharacterizedFTIRHCspectroscopymassspectrometryrangesubstituentsincludingelectron-richelectron-deficientinductivelyelectron-withdrawinggroupsringsuccessfullytoleratedevaluatedpotentialinhibitusingindophenolmethodmajoritycompoundsnoticeablypotentconventionalthiourea2-1-5-chlorothiophen-2-ylethylidene--2-morpholinoethylhydrazinecarbothioamideinhibiteduncompetitivemannerICvalue380±19 µMfindingsstudiesdemonstratedcompoundstrongaffinityactivesiteSignificantscoresefficientfreeenergiesdisplayedFinallyADMEpropertiessuggesteddruglikenessbehaviorzeroviolationExplorationthiosemicarbazonestreatmentviatargetingenzyme:Synthesisbiochemicalscreeningcomputationalanalysisinteractionsmorpholinepharmacokinetics

Similar Articles

Cited By