A viral E3 ubiquitin ligase produced by herpes simplex virus 1 inhibits the NLRP1 inflammasome.

Pooja Parameswaran, Laurellee Payne, Jennifer Powers, Mehdi Rashighi, Megan H Orzalli
Author Information
  1. Pooja Parameswaran: Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA. ORCID
  2. Laurellee Payne: Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA. ORCID
  3. Jennifer Powers: Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA. ORCID
  4. Mehdi Rashighi: Immunology and Microbiology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School , Worcester, MA, USA. ORCID
  5. Megan H Orzalli: Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA. ORCID

Abstract

Guard proteins initiate defense mechanisms upon sensing pathogen-encoded virulence factors. Successful viral pathogens likely inhibit guard protein activity, but these interactions have been largely undefined. Here, we demonstrate that the human pathogen herpes simplex virus 1 (HSV-1) stimulates and inhibits an antiviral pathway initiated by NLRP1, a guard protein that induces inflammasome formation and pyroptotic cell death when activated. Notably, HSV-1 infection of human keratinocytes promotes posttranslational modifications to NLRP1, consistent with MAPK-dependent NLRP1 activation, but does not result in downstream inflammasome formation. We identify infected cell protein 0 (ICP0) as the critical HSV-1 protein that is necessary and sufficient for inhibition of the NLRP1 pathway. Mechanistically, ICP0's cytoplasmic localization and function as an E3 ubiquitin ligase prevents proteasomal degradation of the auto-inhibitory NT-NLRP1 fragment, thereby preventing inflammasome formation. Further, we demonstrate that inhibiting this inflammasome is important for promoting HSV-1 replication. Thus, we have established a mechanism by which HSV-1 overcomes a guard-mediated antiviral defense strategy in humans.

References

  1. Cell Rep. 2023 Jan 31;42(1):111965 [PMID: 36649711]
  2. Immunity. 2021 Jul 13;54(7):1447-1462.e5 [PMID: 33979579]
  3. J Virol. 1989 Nov;63(11):4579-89 [PMID: 2552142]
  4. J Exp Med. 2023 Oct 2;220(10): [PMID: 37642997]
  5. J Virol. 2013 May;87(9):5005-18 [PMID: 23427152]
  6. Cell Chem Biol. 2018 Mar 15;25(3):262-267.e5 [PMID: 29396289]
  7. J Virol. 1999 Oct;73(10):8415-26 [PMID: 10482593]
  8. Cell Rep. 2023 Jan 31;42(1):111966 [PMID: 36649710]
  9. PLoS One. 2010 Apr 29;5(4):e10428 [PMID: 20454685]
  10. Nat Commun. 2020 Sep 18;11(1):4687 [PMID: 32948771]
  11. J Virol. 2005 Jul;79(13):8348-60 [PMID: 15956580]
  12. J Virol. 2015 Jan;89(1):220-9 [PMID: 25320289]
  13. Nature. 2021 Apr;592(7856):778-783 [PMID: 33731932]
  14. Nat Immunol. 2022 Jun;23(6):916-926 [PMID: 35618833]
  15. J Biol Chem. 2022 Jul;298(7):102032 [PMID: 35580636]
  16. Front Microbiol. 2022 Apr 18;13:856471 [PMID: 35516420]
  17. PLoS One. 2011;6(11):e27396 [PMID: 22087307]
  18. Nat Microbiol. 2020 Jan;5(1):14-26 [PMID: 31857733]
  19. J Virol. 1998 Apr;72(4):3307-20 [PMID: 9525658]
  20. J Exp Med. 2023 Oct 2;220(10): [PMID: 37642996]
  21. J Gen Virol. 1989 May;70 ( Pt 5):1185-202 [PMID: 2543774]
  22. PLoS One. 2010 Jun 08;5(6):e10975 [PMID: 20544015]
  23. Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2213777120 [PMID: 36693106]
  24. Virology. 1970 Dec;42(4):1144-6 [PMID: 4321307]
  25. Int J Mol Sci. 2020 Jul 21;21(14): [PMID: 32708188]
  26. Annu Rev Immunol. 2023 Apr 26;41:453-481 [PMID: 36750319]
  27. Elife. 2021 Jan 07;10: [PMID: 33410748]
  28. J Virol. 2004 Feb;78(4):1763-74 [PMID: 14747541]
  29. Science. 2013 Sep 13;341(6151):1246-9 [PMID: 23887873]
  30. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3008-17 [PMID: 23027953]
  31. Virus Res. 2020 Aug;285:198015 [PMID: 32416261]
  32. J Biol Chem. 1999 Feb 19;274(8):5097-103 [PMID: 9988758]
  33. Cell. 2016 Sep 22;167(1):187-202.e17 [PMID: 27662089]
  34. Nat Commun. 2016 Jun 22;7:11929 [PMID: 27329339]
  35. Nat Microbiol. 2021 Feb;6(2):234-245 [PMID: 33432153]
  36. Elife. 2020 Dec 22;9: [PMID: 33350386]
  37. Cell. 2023 May 25;186(11):2288-2312 [PMID: 37236155]
  38. Mol Cell. 2018 Sep 6;71(5):825-840.e6 [PMID: 30100266]
  39. J Exp Med. 2023 Jan 2;220(1): [PMID: 36315050]
  40. J Virol. 1977 Feb;21(2):584-600 [PMID: 189089]
  41. Mol Cell. 2022 Jul 7;82(13):2385-2400.e9 [PMID: 35594856]
  42. Science. 2022 Jul 15;377(6603):328-335 [PMID: 35857590]
  43. Cell Death Dis. 2018 Jan 18;9(2):24 [PMID: 29348630]
  44. Nat Chem Biol. 2018 May;14(5):431-441 [PMID: 29581585]
  45. Virol J. 2016 Mar 08;13:38 [PMID: 26952111]
  46. Cell Rep. 2020 Oct 13;33(2):108264 [PMID: 33053349]
  47. Nature. 2023 Oct;622(7981):188-194 [PMID: 37704723]
  48. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):E1632-41 [PMID: 25775541]
  49. J Biol Chem. 2018 Dec 7;293(49):18864-18878 [PMID: 30291141]
  50. J Virol. 2001 Apr;75(8):3832-40 [PMID: 11264372]
  51. J Gen Virol. 1986 Dec;67 ( Pt 12):2571-85 [PMID: 3025339]
  52. J Virol. 2014 Jul;88(14):8091-101 [PMID: 24807717]
  53. Proc Natl Acad Sci U S A. 2013 May 7;110(19):7808-13 [PMID: 23603272]
  54. Adv Anat Embryol Cell Biol. 2017;223:49-75 [PMID: 28528439]
  55. Trends Immunol. 2022 Dec;43(12):1006-1017 [PMID: 36369102]
  56. J Biol Chem. 2012 Jul 20;287(30):25030-7 [PMID: 22665479]
  57. Science. 2020 Dec 4;370(6521): [PMID: 33093214]
  58. Nature. 2015 Oct 29;526(7575):666-71 [PMID: 26375259]
  59. Nat Immunol. 2014 Sep;15(9):839-45 [PMID: 25064072]
  60. J Virol. 1997 Nov;71(11):8602-14 [PMID: 9343218]
  61. Science. 2011 Jan 21;331(6015):330-4 [PMID: 21252346]
  62. Nature. 2021 Apr;592(7856):773-777 [PMID: 33731929]
  63. Science. 2019 Apr 5;364(6435): [PMID: 30872533]
  64. J Virol. 2019 Oct 15;93(21): [PMID: 31375597]
  65. Science. 2019 Apr 5;364(6435):82-85 [PMID: 30872531]
  66. Science. 2021 Jan 29;371(6528): [PMID: 33243852]
  67. Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4492-501 [PMID: 24198334]
  68. Virology. 2016 Jan;487:215-21 [PMID: 26547038]
  69. J Virol. 1992 May;66(5):2904-15 [PMID: 1313909]
  70. Sci Immunol. 2022 Nov 11;7(77):eabm7200 [PMID: 36332009]

Grants

  1. R00 AI130258/NIAID NIH HHS
  2. /UMass Chan Medical School
  3. /Richard and Susan Smith Family Foundation
  4. R00AI130258/NIH HHS

MeSH Term

Humans
Inflammasomes
Ubiquitin-Protein Ligases
Herpesvirus 1, Human
NLR Proteins
Adaptor Proteins, Signal Transducing
Immediate-Early Proteins
HEK293 Cells
Virus Replication
Keratinocytes
Herpes Simplex
Animals

Chemicals

Inflammasomes
Ubiquitin-Protein Ligases
NLRP1 protein, human
NLR Proteins
Adaptor Proteins, Signal Transducing
Vmw110 protein, Human herpesvirus 1
Immediate-Early Proteins

Word Cloud

Created with Highcharts 10.0.0HSV-1NLRP1inflammasomeproteinformationdefenseviralguarddemonstratehumanherpessimplexvirus1inhibitsantiviralpathwaycellE3ubiquitinligaseGuardproteinsinitiatemechanismsuponsensingpathogen-encodedvirulencefactorsSuccessfulpathogenslikelyinhibitactivityinteractionslargelyundefinedpathogenstimulatesinitiatedinducespyroptoticdeathactivatedNotablyinfectionkeratinocytespromotesposttranslationalmodificationsconsistentMAPK-dependentactivationresultdownstreamidentifyinfected0ICP0criticalnecessarysufficientinhibitionMechanisticallyICP0'scytoplasmiclocalizationfunctionpreventsproteasomaldegradationauto-inhibitoryNT-NLRP1fragmenttherebypreventinginhibitingimportantpromotingreplicationThusestablishedmechanismovercomesguard-mediatedstrategyhumansproduced

Similar Articles

Cited By (2)