MARTX toxin processing and degradation of cellular Rab GTPases by the cytotoxic effector Makes Caterpillars Floppy.

Alfa Herrera, Megan M Packer, Monica Rosas-Lemus, George Minasov, Jiexi Chen, John H Brumell, Karla J F Satchell
Author Information
  1. Alfa Herrera: Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611. ORCID
  2. Megan M Packer: Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611. ORCID
  3. Monica Rosas-Lemus: Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.
  4. George Minasov: Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611. ORCID
  5. Jiexi Chen: Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.
  6. John H Brumell: Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada. ORCID
  7. Karla J F Satchell: Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611. ORCID

Abstract

causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host s-related proteins in rain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.

Keywords

References

  1. Sci Signal. 2018 Oct 02;11(550): [PMID: 30279169]
  2. EMBO Rep. 2013 Feb;14(2):199-205 [PMID: 23288104]
  3. Traffic. 2011 Apr;12(4):407-20 [PMID: 21255211]
  4. Mol Microbiol. 2015 Feb;95(4):590-604 [PMID: 25427654]
  5. Methods Enzymol. 2001;329:175-87 [PMID: 11210534]
  6. mBio. 2022 Oct 26;13(5):e0150022 [PMID: 36169197]
  7. Sci Adv. 2020 Mar 11;6(11):eaaz2094 [PMID: 32195351]
  8. Biochem J. 1996 Apr 1;315 ( Pt 1):21-4 [PMID: 8670109]
  9. J Struct Funct Genomics. 2013 Dec;14(4):135-44 [PMID: 24057978]
  10. J Cell Sci. 2015 Sep 1;128(17):3171-6 [PMID: 26272922]
  11. Infect Immun. 2015 Nov;83(11):4392-403 [PMID: 26351282]
  12. Cell. 1995 Oct 6;83(1):129-35 [PMID: 7553864]
  13. Cell Host Microbe. 2016 Feb 10;19(2):216-26 [PMID: 26867180]
  14. J Bacteriol. 2020 Nov 19;202(24): [PMID: 32900828]
  15. Cell Host Microbe. 2013 Sep 11;14(3):256-68 [PMID: 24034612]
  16. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  17. Nature. 1991 Apr 25;350(6320):715-8 [PMID: 1902553]
  18. EMBO J. 2015 Nov 12;34(22):2840-61 [PMID: 26471730]
  19. J Cell Biol. 2007 Jan 29;176(3):263-8 [PMID: 17261845]
  20. Science. 2006 Dec 1;314(5804):1458-61 [PMID: 17095657]
  21. Traffic. 2002 Jul;3(7):472-82 [PMID: 12047555]
  22. Nat Commun. 2014 May 13;5:3734 [PMID: 24818582]
  23. J Cell Biol. 2002 Feb 4;156(3):511-8 [PMID: 11827983]
  24. Infect Immun. 2003 Oct;71(10):5855-70 [PMID: 14500507]
  25. Small GTPases. 2018 Mar 4;9(1-2):49-56 [PMID: 28426288]
  26. Nat Commun. 2018 Jan 3;9(1):44 [PMID: 29298974]
  27. J Biol Chem. 2021 Dec;297(6):101340 [PMID: 34695417]
  28. J Biol Chem. 2011 Sep 16;286(37):32834-42 [PMID: 21795713]
  29. Front Cell Dev Biol. 2020 Sep 30;8:577342 [PMID: 33102484]
  30. Science. 2012 Nov 16;338(6109):960-3 [PMID: 23162001]
  31. Pathog Dis. 2015 Dec;73(9):ftv092 [PMID: 26472741]
  32. Cell Microbiol. 2016 Aug;18(8):1078-93 [PMID: 26780191]
  33. Science. 2017 Oct 27;358(6362):528-531 [PMID: 29074776]
  34. FEBS J. 2021 Jan;288(1):36-55 [PMID: 32542850]
  35. FASEB J. 2017 Sep;31(9):3757-3773 [PMID: 28522593]
  36. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2572-7 [PMID: 24550285]
  37. Dev Biol. 2020 Aug 15;464(2):188-201 [PMID: 32562757]
  38. Microbiol Spectr. 2015 Jun;3(3): [PMID: 26185092]
  39. J Biol Chem. 2006 Oct 27;281(43):32366-74 [PMID: 16954226]
  40. Cell Microbiol. 2020 Feb;22(2):e13133 [PMID: 31658406]
  41. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18418-23 [PMID: 22042847]
  42. Cell Microbiol. 2015 Oct;17(10):1494-509 [PMID: 25912102]
  43. Small GTPases. 2018 Mar 4;9(1-2):182-191 [PMID: 28632996]
  44. EMBO J. 1992 Dec;11(12):4379-89 [PMID: 1425574]
  45. Mol Biol Cell. 2005 Oct;16(10):4495-508 [PMID: 16030262]
  46. Life Sci Alliance. 2023 Feb 13;6(5): [PMID: 36781179]
  47. Cell. 2003 May 2;113(3):315-28 [PMID: 12732140]
  48. Mol Biol Cell. 2003 May;14(5):2116-27 [PMID: 12802079]
  49. PLoS Pathog. 2017 Jan 6;13(1):e1006119 [PMID: 28060924]
  50. Nat Commun. 2015 Jun 08;6:7396 [PMID: 26051945]
  51. J Biol Chem. 2003 Feb 7;278(6):4063-71 [PMID: 12446704]
  52. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18031-18040 [PMID: 31427506]

Grants

  1. CCSG P30 CA060553/HHS | NIH | National Cancer Institute (NCI)
  2. S10OD025194/HHS | NIH | NIH Office of the Director (OD)
  3. P41 GM108569/NIGMS NIH HHS
  4. R01 GM129325/NIGMS NIH HHS
  5. F31 AI172382/NIAID NIH HHS
  6. HHSN272201700060C/NIAID NIH HHS
  7. 75N93022C00035/NIAID NIH HHS
  8. R01-GM129325/HHS | National Institutes of Health (NIH)
  9. 085P1000817/Michigan Economic Development Corporation (MEDC)
  10. K99 GM143571/HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  11. DE-AC02- 06CH11357/U.S. Department of Energy (DOE)
  12. P30 CA060553/NCI NIH HHS
  13. R37 AI092825/NIAID NIH HHS
  14. S10 OD025194/NIH HHS
  15. K99 AI167819/NIAID NIH HHS

MeSH Term

Animals
Female
Humans
Mice
ADP-Ribosylation Factors
Bacterial Toxins
HEK293 Cells
Mice, Inbred ICR
Proteolysis
rab GTP-Binding Proteins
Vibrio Infections
Vibrio vulnificus

Chemicals

ADP-Ribosylation Factors
Bacterial Toxins
rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0MCFRabMARTXtoxinRabseffectorhostARFsbindsdegradationinfectionsMakesCaterpillarsshowguanosinewithindemonstrateautoprocessingactivestructureactivatedRab1BGTPasescauseslife-threateningwoundgastrointestinalmediatedprimarilyproductionMultifunctional-AutoprocessingRepeats-In-ToxincommonlypresentdomainFloppy-likecysteineproteasestimulatedadenosinediphosphateADPribosylationfactorsautoprocessprocessedcleavess-relatedproteinsraintriphosphatasesC-terminaltailsresultinginterfaceoccupiedMoreoverpreferentiallyARF1priorcleavesubsequentusepredictionalgorithmsstructuralcompositionrathersequencedeterminestargetspecificitydeterminecrystalaMCFswappeddimerrevealingalternativeconformationsuggestrepresentsopenstatereorganizedsiteresiduescleavageresultsdispersalcellslossdensityintestinaltissueinfectedmiceCollectivelyworkdescribesextracellularbacterialmechanismwherebysubsequentlyinducesanothersmalltriphosphataseGTPasedriveorganelledamagecelldeathpromotepathogenesisrapidlyfatalprocessingcellularcytotoxicFloppyVibriovulnificushost-pathogeninteraction

Similar Articles

Cited By (3)