Age-related behavioral resilience in smartphone touchscreen interaction dynamics.

Enea Ceolini, K Richard Ridderinkhof, Arko Ghosh
Author Information
  1. Enea Ceolini: Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands. ORCID
  2. K Richard Ridderinkhof: Department of Psychology, University of Amsterdam, Amsterdam 1018 WS, The Netherlands.
  3. Arko Ghosh: Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands. ORCID

Abstract

We experience a life that is full of ups and downs. The ability to bounce back after adverse life events such as the loss of a loved one or serious illness declines with age, and such isolated events can even trigger accelerated aging. How humans respond to common day-to-day perturbations is less clear. Here, we infer the aging status from smartphone behavior by using a decision tree regression model trained to accurately estimate the chronological age based on the dynamics of touchscreen interactions. Individuals (N = 280, 21 to 87 y of age) expressed smartphone behavior that appeared younger on certain days and older on other days through the observation period that lasted up to ~4 y. We captured the essence of these fluctuations by leveraging the mathematical concept of critical transitions and tipping points in complex systems. In most individuals, we find one or more alternative stable aging states separated by tipping points. The older the individual, the lower the resilience to forces that push the behavior across the tipping point into an older state. Traditional accounts of aging based on sparse longitudinal data spanning decades suggest a gradual behavioral decline with age. Taken together with our current results, we propose that the gradual age-related changes are interleaved with more complex dynamics at shorter timescales where the same individual may navigate distinct behavioral aging states from one day to the next. Real-world behavioral data modeled as a complex system can transform how we view and study aging.

Keywords

References

Annu Rev Psychol. 2012;63:201-26 [PMID: 21740223]
iScience. 2022 Aug 05;25(8):104792 [PMID: 36039359]
iScience. 2022 Apr 06;25(5):104199 [PMID: 35494229]
Phys Rev E. 2020 Jul;102(1-1):012307 [PMID: 32795062]
Psychol Health. 2015;30(12):1470-85 [PMID: 26066614]
Curr Dir Psychol Sci. 2014 Aug 1;23(4):252-256 [PMID: 25382943]
Ann Neurol. 2020 Jul;88(1):93-105 [PMID: 32285956]
Science. 2021 Jun 11;372(6547): [PMID: 34112667]
Psychol Sci. 2013 Sep;24(9):1747-54 [PMID: 23842960]
Depress Anxiety. 2003;18(2):76-82 [PMID: 12964174]
Neurology. 2021 Aug 10;97(6):e554-e563 [PMID: 34261787]
NPJ Digit Med. 2023 Mar 23;6(1):49 [PMID: 36959382]
Alzheimers Res Ther. 2020 Apr 14;12(1):41 [PMID: 32290864]
Mol Psychiatry. 2019 Feb;24(2):266-281 [PMID: 29892055]
Science. 2011 May 27;332(6033):1079-82 [PMID: 21527677]
Ann Med. 2001 Jul;33(5):350-7 [PMID: 11491194]
Eur Radiol. 2017 Apr;27(4):1568-1576 [PMID: 27379992]
Alzheimers Dement (N Y). 2021 Feb 14;7(1):e12132 [PMID: 33614897]
EBioMedicine. 2021 Oct;72:103600 [PMID: 34614461]
Nat Mach Intell. 2020 Jan;2(1):56-67 [PMID: 32607472]
Cogn Emot. 2023 Sep 18;:1-11 [PMID: 37720986]
iScience. 2021 Feb 07;24(3):102159 [PMID: 33681725]
Am J Nurs. 2006 Jan;106(1):58-67, quiz 67-8 [PMID: 16481783]
NPJ Digit Med. 2019 Jul 29;2:73 [PMID: 31372507]
J Exp Psychol Hum Percept Perform. 2023 Nov;49(11):1377-1394 [PMID: 37870818]
NPJ Digit Med. 2018 Mar 7;1:4 [PMID: 31304290]
BMC Geriatr. 2017 Jul 21;17(1):160 [PMID: 28732489]
Elife. 2020 Feb 11;9: [PMID: 32041686]
Gerontologist. 2017 Apr 1;57(2):319-328 [PMID: 26582383]
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2311865121 [PMID: 38861610]
J Bone Joint Surg Am. 2015 Oct 7;97(19):1628-34 [PMID: 26446970]
iScience. 2021 May 13;24(6):102538 [PMID: 34308281]
Lancet. 2022 Sep 24;400(10357):988 [PMID: 36154684]
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8252-8259 [PMID: 30082409]
Cell Syst. 2022 Jan 19;13(1):83-102.e6 [PMID: 34626539]
PLoS One. 2012;7(9):e45586 [PMID: 23029118]
Science. 2012 Oct 19;338(6105):344-8 [PMID: 23087241]
Elife. 2021 Nov 10;10: [PMID: 34756163]
Nature. 2001 Oct 11;413(6856):591-6 [PMID: 11595939]
Nat Rev Neurosci. 2004 Feb;5(2):87-96 [PMID: 14735112]
Am J Psychiatry. 2016 Jun 1;173(6):607-16 [PMID: 26917166]
Magn Reson Med. 2000 Aug;44(2):259-68 [PMID: 10918325]
Neuroscience. 2018 Aug 21;386:309-314 [PMID: 30017956]
Aging Cell. 2022 Aug;21(8):e13664 [PMID: 35778957]
BMC Neurosci. 2017 Aug 24;18(1):65 [PMID: 28836958]
Science. 2011 Oct 14;334(6053):232-5 [PMID: 21998390]
iScience. 2022 Aug 05;25(8):104791 [PMID: 36039357]
Age Ageing. 2021 Nov 10;50(6):2174-2182 [PMID: 34120182]
Neurology. 2021 Sep 7;97(10):474-488 [PMID: 34266918]

Grants

  1. 11283/Velux Stiftung (Velux Foundation)
  2. 199692/Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)

MeSH Term

Humans
Smartphone
Aged
Middle Aged
Male
Adult
Female
Aging
Aged, 80 and over
Young Adult
Resilience, Psychological

Word Cloud

Similar Articles

Cited By