Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice.

Yong-Sheng Zhou, Hao-Bo Tao, Si-Si Lv, Ke-Qin Liang, Wen-Yi Shi, Ke-Yi Liu, Yun-Yun Li, Lv-Yi Chen, Ling Zhou, Shi-Jin Yin, Qian-Ru Zhao
Author Information
  1. Yong-Sheng Zhou: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  2. Hao-Bo Tao: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  3. Si-Si Lv: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  4. Ke-Qin Liang: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  5. Wen-Yi Shi: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  6. Ke-Yi Liu: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  7. Yun-Yun Li: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  8. Lv-Yi Chen: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  9. Ling Zhou: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
  10. Shi-Jin Yin: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China. yinshijinyf@163.com.
  11. Qian-Ru Zhao: Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China. qianru.zhao@scuec.edu.cn.

Abstract

Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca influx evoked by high K solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.

Keywords

References

  1. J Neurosci. 2010 Dec 8;30(49):16662-72 [PMID: 21148005]
  2. Elife. 2021 Dec 15;10: [PMID: 34908526]
  3. Cell Biosci. 2021 Feb 3;11(1):29 [PMID: 33536056]
  4. Neuropharmacology. 2017 May 15;118:102-112 [PMID: 28242439]
  5. J Physiol. 2018 Nov;596(22):5397-5414 [PMID: 30194865]
  6. Nat Rev Neurosci. 2020 Apr;21(4):213-229 [PMID: 32161339]
  7. Nat Neurosci. 2014 Mar;17(3):407-15 [PMID: 24509429]
  8. Neural Plast. 2016;2016:8782518 [PMID: 27379187]
  9. Neuron. 2004 Feb 5;41(3):389-404 [PMID: 14766178]
  10. Neuropsychopharmacology. 2012 May;37(6):1338-56 [PMID: 22218089]
  11. Cereb Cortex. 2020 Apr 14;30(4):2627-2641 [PMID: 31800024]
  12. Int J Mol Sci. 2023 Sep 18;24(18): [PMID: 37762510]
  13. Nat Neurosci. 2021 Jun;24(6):777-785 [PMID: 33927400]
  14. J Chem Neuroanat. 2023 Mar;128:102233 [PMID: 36640913]
  15. Int J Obes (Lond). 2008 Aug;32(8):1222-32 [PMID: 18542083]
  16. Neuron. 2009 Sep 24;63(6):854-64 [PMID: 19778513]
  17. Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3239-3247 [PMID: 31992641]
  18. Neuroscience. 2016 Sep 7;331:206-20 [PMID: 27343829]
  19. Eur J Neurosci. 1995 Nov 1;7(11):2189-205 [PMID: 8563969]
  20. J Clin Invest. 2020 Aug 3;130(8):4195-4212 [PMID: 32597830]
  21. Cold Spring Harb Perspect Biol. 2016 May 02;8(5): [PMID: 27141052]
  22. J Neurosci. 2016 Oct 5;36(40):10376-10391 [PMID: 27707972]
  23. Mol Pharmacol. 2005 Nov;68(5):1254-70 [PMID: 16099841]
  24. Cell Rep. 2016 Sep 6;16(10):2749-2762 [PMID: 27568555]
  25. Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2113675119 [PMID: 35439054]
  26. Eur J Neurosci. 2005 Oct;22(8):1853-62 [PMID: 16262625]
  27. Neuron. 2019 Jan 16;101(2):260-273.e6 [PMID: 30545599]
  28. J Neurosci. 2009 May 20;29(20):6734-51 [PMID: 19458242]
  29. J Neurosci. 2021 Nov 24;41(47):9688-9701 [PMID: 34654752]
  30. Neurobiol Dis. 2020 Dec;146:105121 [PMID: 33007389]
  31. Curr Top Med Chem. 2016;16(16):1877-85 [PMID: 26975504]
  32. J Alzheimers Dis. 2023;92(4):1241-1256 [PMID: 36872774]
  33. Eur Neurol. 2011;66(2):98-105 [PMID: 21846992]
  34. Neuropharmacology. 2021 Mar 1;185:108399 [PMID: 33400937]
  35. Brain Struct Funct. 2019 Jan;224(1):315-336 [PMID: 30317390]
  36. Neuron. 2020 Jun 17;106(6):1009-1025.e10 [PMID: 32302532]
  37. Nat Metab. 2022 Jul;4(7):901-917 [PMID: 35879461]
  38. Neuron. 2018 May 2;98(3):466-481 [PMID: 29723500]
  39. Neurotherapeutics. 2023 Jul;20(4):1198-1214 [PMID: 37226029]
  40. Neurobiol Dis. 2013 Jul;55:44-62 [PMID: 23545166]
  41. Epilepsia. 2015 Mar;56(3):479-88 [PMID: 25630397]
  42. J Physiol. 2006 Mar 1;571(Pt 2):371-89 [PMID: 16373387]
  43. J Neuroendocrinol. 2012 Aug;24(8):1087-95 [PMID: 22435906]
  44. J Proteomics. 2019 Aug 30;206:103423 [PMID: 31255707]
  45. Nature. 1998 Feb 26;391(6670):892-6 [PMID: 9495341]
  46. J Vis Exp. 2018 Nov 20;(141): [PMID: 30531711]
  47. Neurobiol Aging. 2020 May;89:63-70 [PMID: 31980278]
  48. J Neurosci. 2014 May 14;34(20):6970-84 [PMID: 24828650]
  49. J Physiol. 2013 May 15;591(10):2541-61 [PMID: 23478133]
  50. Front Pharmacol. 2023 Apr 25;14:1190476 [PMID: 37180699]
  51. Proc Natl Acad Sci U S A. 2021 Mar 16;118(11): [PMID: 33649184]
  52. J Neurochem. 2021 Jun;157(6):1876-1896 [PMID: 32978815]
  53. Diabetes Metab Res Rev. 2009 Sep;25(6):523-7 [PMID: 19489042]
  54. Dev Neurobiol. 2013 Nov;73(11):841-55 [PMID: 23821603]
  55. J Biol Chem. 2008 Jul 4;283(27):19058-65 [PMID: 18480054]
  56. J Neurosci. 2022 Jul 27;42(30):5966-5990 [PMID: 35710623]
  57. Cell Biosci. 2022 May 7;12(1):54 [PMID: 35526070]
  58. Curr Biol. 2019 Aug 5;29(15):2455-2464.e5 [PMID: 31327715]
  59. JAMA Neurol. 2019 Jun 1;76(6):690-700 [PMID: 30855662]
  60. Front Cell Neurosci. 2018 Jul 27;12:213 [PMID: 30100867]
  61. J Neurosci. 2011 Feb 9;31(6):2156-66 [PMID: 21307252]
  62. Nat Neurosci. 2006 Jun;9(6):807-15 [PMID: 16648849]
  63. Neuron. 2011 Jun 9;70(5):1005-19 [PMID: 21658591]

MeSH Term

Animals
Kv1.3 Potassium Channel
Mice, Knockout
Piriform Cortex
Pyramidal Cells
Neuronal Plasticity
Mice
Male
Mice, Inbred C57BL
Feeding Behavior
Calcium
Calcium-Calmodulin-Dependent Protein Kinase Type 2

Chemicals

Kv1.3 Potassium Channel
Calcium
Calcium-Calmodulin-Dependent Protein Kinase Type 2

Word Cloud

Created with Highcharts 10.0.0Kv13piriformcortexmiceolfactoryKOneuronspyramidalneuronalfeedingbehaviorCasignificantlyincreasedknockoutrecognitionchannelexpressedbulbshowedevokedinfluxpresynapticelevatedexcitabilitysynapticplasticitybelongsvoltage-gatedpotassiumKvfamilywidelycentralnervoussystemassociatedvarietyneuropsychiatricdisordershighlyinvolvedprocessodorperceptionnutrientmetabolismanimalsPreviousstudiesexploredfunctionrolelessknownstudyinvestigatedchangessmellstimulationthusrevealinglinksensationbodyweightCoronalslicesincludinganteriorpreparedwhole-cellrecordingimagingconductedfiringfrequencydepolarizationpulseshighKsolutioncomparedWTWesternblottingimmunofluorescenceanalysesrevealeddownstreamsignalingmoleculesCaMKIIPKCαactivatedPyramidalexhibitedreducedpaired-pulseratioCav21expressionprovingvesiclereleasemightUsingGolgistainingfounddendriticspinedensitysupportingstrongerpostsynapticresponsestestsconditionalcannulainjection5-4-phenoxybutoxypsoralenblockerindexalteredsummarykeymoleculeregulatingactivitymaylayfoundationtreatmentdiseasesrelateddetectionEffectsneuron

Similar Articles

Cited By