Perspectives of Ferroelectric Wurtzite AlScN: Material Characteristics, Preparation, and Applications in Advanced Memory Devices.

Haiming Qin, Nan He, Cong Han, Miaocheng Zhang, Yu Wang, Rui Hu, Jiawen Wu, Weijing Shao, Mohamed Saadi, Hao Zhang, Youde Hu, Yi Liu, Xinpeng Wang, Yi Tong
Author Information
  1. Haiming Qin: College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. ORCID
  2. Nan He: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.
  3. Cong Han: College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  4. Miaocheng Zhang: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.
  5. Yu Wang: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China. ORCID
  6. Rui Hu: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China.
  7. Jiawen Wu: Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, China.
  8. Weijing Shao: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.
  9. Mohamed Saadi: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China. ORCID
  10. Hao Zhang: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.
  11. Youde Hu: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.
  12. Yi Liu: College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  13. Xinpeng Wang: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.
  14. Yi Tong: Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, China.

Abstract

Ferroelectric, phase-change, and magnetic materials are considered promising candidates for advanced memory devices. Under the development dilemma of traditional silicon-based memory devices, ferroelectric materials stand out due to their unique polarization properties and diverse manufacturing techniques. On the occasion of the 100th anniversary of the birth of ferroelectricity, scandium-doped aluminum nitride, which is a different wurtzite structure, was reported to be ferroelectric with a larger coercive, remanent polarization, curie temperature, and a more stable ferroelectric phase. The inherent advantages have attracted widespread attention, promising better performance when used as data storage materials and better meeting the needs of the development of the information age. In this paper, we start from the characteristics and development history of ferroelectric materials, mainly focusing on the characteristics, preparation, and applications in memory devices of ferroelectric wurtzite AlScN. It compares and analyzes the unique advantages of AlScN-based memory devices, aiming to lay a theoretical foundation for the development of advanced memory devices in the future.

Keywords

References

  1. Adv Mater. 2023 Oct;35(43):e2204904 [PMID: 35952355]
  2. ACS Nano. 2024 Feb 6;18(5):4180-4188 [PMID: 38271989]
  3. Dalton Trans. 2022 Feb 14;51(7):2610-2630 [PMID: 35076649]
  4. Adv Sci (Weinh). 2024 Apr;11(16):e2308588 [PMID: 38375965]
  5. Micromachines (Basel). 2023 May 28;14(6): [PMID: 37374723]
  6. Nat Nanotechnol. 2023 May;18(5):486-492 [PMID: 36941359]
  7. Nat Nanotechnol. 2023 Sep;18(9):1044-1050 [PMID: 37217764]
  8. Science. 2023 Jun 9;380(6649):1034-1038 [PMID: 37289886]
  9. Micromachines (Basel). 2022 Aug 08;13(8): [PMID: 36014204]
  10. Nanoscale Res Lett. 2020 Aug 2;15(1):157 [PMID: 32743764]
  11. Nat Nanotechnol. 2023 May;18(5):422-441 [PMID: 37106053]
  12. Adv Mater. 2023 Oct;35(43):e2200659 [PMID: 35305277]
  13. Nano Lett. 2021 May 12;21(9):3753-3761 [PMID: 33881884]
  14. Nano Lett. 2015 Jan 14;15(1):709-13 [PMID: 25434747]
  15. ACS Appl Mater Interfaces. 2019 Jun 5;11(22):20482-20490 [PMID: 31074260]
  16. Nanoscale Res Lett. 2012 Jun 01;7(1):285 [PMID: 22655750]
  17. ACS Appl Mater Interfaces. 2023 Feb 8;15(5):7030-7043 [PMID: 36715613]
  18. ACS Appl Mater Interfaces. 2023 Sep 6;15(35):41606-41613 [PMID: 37610983]
  19. Nat Commun. 2014 Jul 24;5:4289 [PMID: 25056141]
  20. Nanoscale. 2018 Jan 3;10(2):716-725 [PMID: 29242881]
  21. J Am Chem Soc. 2002 Apr 17;124(15):4116-23 [PMID: 11942851]
  22. Adv Mater. 2009 Feb 2;21(5):593-6 [PMID: 21161988]
  23. Materials (Basel). 2024 Jan 12;17(2): [PMID: 38255566]
  24. Adv Sci (Weinh). 2023 Sep;10(25):e2302296 [PMID: 37382398]
  25. Nanoscale. 2023 Oct 20;15(40):16390-16402 [PMID: 37791415]

Grants

  1. 2021ZD0201201/2030 Major Project of the Chinese Ministry of Science and Technology
  2. G2022178034L/High-end foreign expert team of the Ministry of Science and Technology

Word Cloud

Created with Highcharts 10.0.0ferroelectricmemorydevicesmaterialsdevelopmentwurtziteFerroelectricpromisingadvanceduniquepolarizationadvantagesbettercharacteristicsAlScNphase-changemagneticconsideredcandidatesdilemmatraditionalsilicon-basedstandduepropertiesdiversemanufacturingtechniquesoccasion100thanniversarybirthferroelectricityscandium-dopedaluminumnitridedifferentstructurereportedlargercoerciveremanentcurietemperaturestablephaseinherentattractedwidespreadattentionperformanceuseddatastoragemeetingneedsinformationagepaperstarthistorymainlyfocusingpreparationapplicationscomparesanalyzesAlScN-basedaiminglaytheoreticalfoundationfuturePerspectivesWurtziteAlScN:MaterialCharacteristicsPreparationApplicationsAdvancedMemoryDevices

Similar Articles

Cited By