Development and validation of an interpretable model for predicting sepsis mortality across care settings.

Young Seok Lee, Seungbong Han, Ye Eun Lee, Jaehwa Cho, Young Kyun Choi, Sun-Young Yoon, Dong Kyu Oh, Su Yeon Lee, Mi Hyeon Park, Chae-Man Lim, Jae Young Moon, Korean Sepsis Alliance (KSA) Investigators
Author Information
  1. Young Seok Lee: Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea.
  2. Seungbong Han: Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea.
  3. Ye Eun Lee: Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea.
  4. Jaehwa Cho: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
  5. Young Kyun Choi: Division of Infectious Disease and Critical Care Medicine, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.
  6. Sun-Young Yoon: Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.
  7. Dong Kyu Oh: Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  8. Su Yeon Lee: Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  9. Mi Hyeon Park: Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  10. Chae-Man Lim: Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  11. Jae Young Moon: Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea. diffable@hanmail.net.

Abstract

There are numerous prognostic predictive models for evaluating mortality risk, but current scoring models might not fully cater to sepsis patients' needs. This study developed and validated a new model for sepsis patients that is suitable for any care setting and accurately forecasts 28-day mortality. The derivation dataset, gathered from 20 hospitals between September 2019 and December 2021, contrasted with the validation dataset, collected from 15 hospitals from January 2022 to December 2022. In this study, 7436 patients were classified as members of the derivation dataset, and 2284 patients were classified as members of the validation dataset. The point system model emerged as the optimal model among the tested predictive models for foreseeing sepsis mortality. For community-acquired sepsis, the model's performance was satisfactory (derivation dataset AUC: 0.779, 95% CI 0.765-0.792; validation dataset AUC: 0.787, 95% CI 0.765-0.810). Similarly, for hospital-acquired sepsis, it performed well (derivation dataset AUC: 0.768, 95% CI 0.748-0.788; validation dataset AUC: 0.729, 95% CI 0.687-0.770). The calculator, accessible at https://avonlea76.shinyapps.io/shiny_app_up/ , is user-friendly and compatible. The new predictive model of sepsis mortality is user-friendly and satisfactorily forecasts 28-day mortality. Its versatility lies in its applicability to all patients, encompassing both community-acquired and hospital-acquired sepsis.

Keywords

References

  1. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  2. Crit Care. 2022 Jan 13;26(1):19 [PMID: 35027073]
  3. Crit Care. 2020 May 19;24(1):239 [PMID: 32430052]
  4. Front Neurorobot. 2013 Dec 04;7:21 [PMID: 24409142]
  5. Lancet. 2020 Jan 18;395(10219):200-211 [PMID: 31954465]
  6. Crit Care. 2022 Sep 16;26(1):280 [PMID: 36114545]
  7. BMC Bioinformatics. 2018 Jul 17;19(1):270 [PMID: 30016950]
  8. JAMA. 1993 Dec 22-29;270(24):2957-63 [PMID: 8254858]
  9. Intern Emerg Med. 2021 Sep;16(6):1649-1661 [PMID: 33890208]
  10. PLoS One. 2017 Oct 26;12(10):e0187088 [PMID: 29073262]
  11. Acute Crit Care. 2019 Aug;34(3):179-191 [PMID: 31723927]
  12. Crit Care. 2020 Feb 18;24(1):57 [PMID: 32070393]
  13. BMC Med Inform Decis Mak. 2020 Oct 2;20(1):251 [PMID: 33008381]
  14. Lancet Neurol. 2014 Jan;13(1):59-66 [PMID: 24290159]
  15. Stroke. 2020 Sep;51(9):2690-2696 [PMID: 32811387]
  16. CMAJ. 2005 Aug 30;173(5):489-95 [PMID: 16129869]
  17. Am J Respir Crit Care Med. 2017 Oct 15;196(8):1004-1011 [PMID: 28418697]
  18. Intensive Care Med. 2023 Feb;49(2):223-225 [PMID: 36315260]
  19. N Engl J Med. 2020 May 21;382(21):2049-2055 [PMID: 32202722]
  20. J Clin Lab Anal. 2020 Sep;34(9):e23421 [PMID: 32725839]
  21. Medicine (Baltimore). 2021 May 14;100(19):e25813 [PMID: 34106618]
  22. BMJ. 2011 Jun 13;342:d3245 [PMID: 21669950]
  23. Ann Intern Med. 2015 Jan 6;162(1):W1-73 [PMID: 25560730]
  24. Sci Rep. 2020 Mar 23;10(1):5245 [PMID: 32251324]
  25. Crit Care. 2018 Jan 26;22(1):18 [PMID: 29373996]
  26. BMC Bioinformatics. 2008 Jul 22;9:319 [PMID: 18647401]
  27. J Transl Med. 2020 Dec 7;18(1):462 [PMID: 33287854]
  28. Crit Care Med. 2020 Oct;48(10):1462-1470 [PMID: 32931189]
  29. J R Coll Physicians Edinb. 2012;42(4):333-40 [PMID: 23240122]
  30. Shock. 2017 Jun;47(6):720-725 [PMID: 27984522]
  31. JAMA. 1993 Nov 24;270(20):2478-86 [PMID: 8230626]
  32. Am J Respir Crit Care Med. 2022 Nov 1;206(9):1107-1116 [PMID: 35763381]
  33. Nat Commun. 2021 Jan 29;12(1):711 [PMID: 33514699]
  34. Intensive Care Med. 2020 Aug;46(8):1536-1551 [PMID: 32591853]
  35. Am J Public Health. 2020 Oct;110(10):1523-1527 [PMID: 32816541]
  36. Intensive Care Med. 2021 Nov;47(11):1181-1247 [PMID: 34599691]
  37. J Am Coll Cardiol. 2020 Jul 7;76(1):85-92 [PMID: 32407772]
  38. Intensive Care Med. 2017 Sep;43(9):1319-1328 [PMID: 28238055]
  39. Biometrics. 1988 Sep;44(3):837-45 [PMID: 3203132]
  40. Crit Care. 2014 Jun 06;18(3):R117 [PMID: 24906651]
  41. Crit Care Med. 2022 May 1;50(5):780-790 [PMID: 34612849]
  42. BMC Health Serv Res. 2021 Aug 20;21(1):843 [PMID: 34416882]
  43. Crit Care Med. 2006 May;34(5):1297-310 [PMID: 16540951]
  44. Stat Med. 2004 May 30;23(10):1631-60 [PMID: 15122742]

Grants

  1. 2022R1F1A1063027/National Research Foundation of Korea
  2. 2019E280500/Korea Disease Control and Prevention Agency
  3. 2020E280700/Korea Disease Control and Prevention Agency
  4. 2021-10-026/Korea Disease Control and Prevention Agency

MeSH Term

Humans
Sepsis
Male
Female
Aged
Middle Aged
Prognosis
Hospital Mortality
Aged, 80 and over
Community-Acquired Infections
ROC Curve
Risk Assessment
Area Under Curve

Word Cloud

Created with Highcharts 10.0.0sepsisdataset0mortalitymodelvalidationpatientsderivationAUC:95%CIpredictivemodelsstudynewcareforecasts28-dayhospitalsDecember2022classifiedmemberssystemcommunity-acquired765-0hospital-acquireduser-friendlynumerousprognosticevaluatingriskcurrentscoringmightfullycaterpatients'needsdevelopedvalidatedsuitablesettingaccuratelygathered20September20192021contrastedcollected15January74362284pointemergedoptimalamongtestedforeseeingmodel'sperformancesatisfactory779792787810Similarlyperformedwell768748-0788729687-0770calculatoraccessiblehttps://avonlea76shinyappsio/shiny_app_up/compatiblesatisfactorilyversatilityliesapplicabilityencompassingDevelopmentinterpretablepredictingacrosssettingsModelingMortalityPointPrognosisSepsis

Similar Articles

Cited By