Biocontrol potential of endophytic A9 against rot disease of .

Xue Chen, Yin Zhang, ShengQian Chao, LiLi Song, GuoGan Wu, Yu Sun, YiFan Chen, BeiBei Lv
Author Information
  1. Xue Chen: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  2. Yin Zhang: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  3. ShengQian Chao: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  4. LiLi Song: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  5. GuoGan Wu: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  6. Yu Sun: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  7. YiFan Chen: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.
  8. BeiBei Lv: Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China.

Abstract

Introduction: is a popular edible fungus with high economic and nutritional value. However, the rot disease caused by , pose a serious threat to the quality and yield of . Biological control is one of the effective ways to control fungal diseases.
Methods and results: In this study, an effective endophytic A9 for the control of rot disease was screened, and its biocontrol mechanism was studied by transcriptome analysis. In total, 122 strains of endophytic bacteria from , of which the antagonistic effect of A9 on G1 reached 72.2% tests. Biological characteristics and genomic features of A9 were analyzed, and key antibiotic gene clusters were detected. Scanning electron microscope (SEM) observation showed that A9 affected the mycelium and spores of G1. In field experiments, the biological control effect of A9 reached to 62.5%. Furthermore, the transcritome profiling provides evidence of A9 bicontrol at the molecular level. A total of 1,246 differentially expressed genes (DEGs) were identified between the treatment and control group. Gene Ontology (GO) enrichment analysis showed that a large number of DEGs were related to antioxidant activity related. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the main pathways were Nitrogen metabolism, Pentose Phosphate Pathway (PPP) and Mitogen-Activated Protein Kinases (MAPK) signal pathway. Among them, some important genes such as carbonic anhydrase CA (H6S33_007248), catalase CAT (H6S33_001409), tRNA dihydrouridine synthase DusB (H6S33_001297) and NAD(P)-binding protein NAD(P) BP (H6S33_000823) were found. Furthermore, A9 considerably enhanced the activity of Polyphenol oxidase (POD), Superoxide dismutase (SOD), Phenylal anineammonia lyase (PAL) and Catalase (CAT).
Conclusion: This study presents the innovative utilization of A9, for effectively controlling rot disease. This will lay a foundation for biological control in , which may lead to the improvement of new biocontrol agents for production.

Keywords

References

  1. J Environ Manage. 2021 Nov 1;297:113278 [PMID: 34325372]
  2. mSphere. 2021 Aug 25;6(4):e0037621 [PMID: 34378986]
  3. Physiol Plant. 2021 Apr;171(4):785-801 [PMID: 33280130]
  4. Crit Rev Food Sci Nutr. 2018 Jul 24;58(11):1888-1901 [PMID: 28350213]
  5. Microorganisms. 2022 Mar 09;10(3): [PMID: 35336171]
  6. Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0022020 [PMID: 34319143]
  7. Phytomedicine. 2013 Jul 15;20(10):913-7 [PMID: 23694750]
  8. Microorganisms. 2022 Aug 31;10(9): [PMID: 36144361]
  9. Front Microbiol. 2020 Jul 14;11:1619 [PMID: 32760378]
  10. Pestic Biochem Physiol. 2023 Dec;197:105681 [PMID: 38072538]
  11. J Fungi (Basel). 2023 Mar 27;9(4): [PMID: 37108865]
  12. Front Plant Sci. 2019 Jul 19;10:845 [PMID: 31379891]
  13. Plant Dis. 2023 Sep 12;: [PMID: 37700471]
  14. BMC Complement Med Ther. 2020 Oct 7;20(1):300 [PMID: 33028279]
  15. J Agric Food Chem. 2022 May 4;70(17):5339-5348 [PMID: 35467346]
  16. J Gen Appl Microbiol. 2020 Nov 30;66(5):279-288 [PMID: 32684536]
  17. Pest Manag Sci. 2006 Feb;62(2):153-61 [PMID: 16408323]
  18. Microorganisms. 2022 Dec 21;11(1): [PMID: 36677311]
  19. Appl Microbiol Biotechnol. 2022 Jun;106(12):4401-4412 [PMID: 35731306]
  20. Food Res Int. 2022 Sep;159:111571 [PMID: 35940783]
  21. Planta. 2021 Aug 12;254(3):49 [PMID: 34383174]
  22. J Fungi (Basel). 2023 Aug 16;9(8): [PMID: 37623626]
  23. Front Microbiol. 2020 Oct 09;11:585404 [PMID: 33162962]
  24. FEMS Microbiol Lett. 2021 Aug 19;368(15): [PMID: 34370011]
  25. Front Microbiol. 2023 Nov 14;14:1285543 [PMID: 38033592]
  26. Food Chem. 2016 Oct 1;208:272-8 [PMID: 27132850]
  27. Int J Mol Sci. 2019 Jun 14;20(12): [PMID: 31207889]
  28. Appl Microbiol Biotechnol. 2012 May;94(3):763-71 [PMID: 22159604]
  29. Pathogens. 2021 May 08;10(5): [PMID: 34066672]
  30. Nucleic Acids Res. 2023 Jan 6;51(D1):D587-D592 [PMID: 36300620]
  31. Microorganisms. 2021 Mar 12;9(3): [PMID: 33809140]
  32. Front Microbiol. 2023 Jan 10;13:1059549 [PMID: 36704569]
  33. Plant Cell Physiol. 2009 Jul;50(7):1277-91 [PMID: 19457984]
  34. FEMS Microbiol Lett. 2017 Mar 1;364(5): [PMID: 28199636]
  35. Metabolites. 2022 Apr 27;12(5): [PMID: 35629901]
  36. J Biotechnol. 2018 Nov 10;285:44-55 [PMID: 30172784]
  37. Plant Dis. 2022 Apr 25;: [PMID: 35467942]
  38. Expert Opin Ther Pat. 2018 Oct;28(10):709-712 [PMID: 30217119]
  39. PLoS One. 2020 Nov 16;15(11):e0242480 [PMID: 33196686]
  40. J Fungi (Basel). 2022 Oct 20;8(10): [PMID: 36294672]
  41. Int J Biol Macromol. 2021 Jun 1;180:222-233 [PMID: 33737179]
  42. Int Rev Cell Mol Biol. 2014;310:1-37 [PMID: 24725423]
  43. Front Microbiol. 2023 Oct 19;14:1264699 [PMID: 37928660]
  44. Cell Host Microbe. 2013 Dec 11;14(6):619-30 [PMID: 24331460]
  45. Front Microbiol. 2022 Sep 02;13:994716 [PMID: 36118232]
  46. Appl Biochem Biotechnol. 2021 Dec;193(12):4197-4213 [PMID: 34524632]
  47. J Microbiol. 2022 May;60(5):496-510 [PMID: 35362894]
  48. Plant Dis. 2024 Jan 3;: [PMID: 38173256]
  49. Trends Microbiol. 1993 Sep;1(6):239-45 [PMID: 8137123]
  50. Microbiol Spectr. 2022 Aug 31;10(4):e0147122 [PMID: 35913211]
  51. Annu Rev Phytopathol. 2013;51:245-66 [PMID: 23663002]
  52. J Fungi (Basel). 2021 Oct 25;7(11): [PMID: 34829188]
  53. Annu Rev Phytopathol. 2020 Aug 25;58:201-223 [PMID: 32384863]
  54. Food Funct. 2018 Sep 19;9(9):5007-5015 [PMID: 30188555]
  55. Plant J. 2013 Aug;75(4):578-91 [PMID: 23621281]
  56. Appl Microbiol Biotechnol. 2023 Sep;107(18):5595-5612 [PMID: 37477696]
  57. J Appl Microbiol. 2020 Mar;128(3):803-813 [PMID: 31705716]
  58. Front Mol Biosci. 2021 Mar 09;8:632341 [PMID: 33768116]
  59. Front Microbiol. 2018 Nov 21;9:2789 [PMID: 30524402]
  60. Front Microbiol. 2022 Sep 06;13:974024 [PMID: 36147847]
  61. Crit Rev Microbiol. 2020 Aug;46(4):450-462 [PMID: 32730726]
  62. J Exp Bot. 2010 Oct;61(15):4197-220 [PMID: 20876333]
  63. Braz J Microbiol. 2021 Jun;52(2):705-714 [PMID: 33594600]
  64. Toxins (Basel). 2023 Apr 26;15(5): [PMID: 37235343]
  65. Expert Opin Ther Pat. 2020 Dec;30(12):963-982 [PMID: 32806966]
  66. J Exp Bot. 2020 Jun 26;71(13):3816-3826 [PMID: 32064525]
  67. Front Microbiol. 2023 Aug 21;14:1259144 [PMID: 37670991]
  68. Pathogens. 2023 Jan 31;12(2): [PMID: 36839497]
  69. J Cell Physiol. 2023 Feb 15;: [PMID: 36790954]
  70. Pathogens. 2022 Sep 29;11(10): [PMID: 36297177]
  71. Environ Microbiol. 2020 Mar;22(3):858-872 [PMID: 31361932]
  72. Plant Pathol J. 2021 Dec;37(6):632-640 [PMID: 34897254]
  73. Nucleic Acids Res. 2000 Jan 1;28(1):33-6 [PMID: 10592175]
  74. Appl Microbiol Biotechnol. 2004 Jun;64(6):756-62 [PMID: 14966664]
  75. Front Microbiol. 2022 Jul 22;13:950742 [PMID: 35935238]
  76. Molecules. 2021 Mar 08;26(5): [PMID: 33800212]
  77. Plant Cell Environ. 2023 Aug;46(8):2277-2295 [PMID: 37157977]
  78. Probiotics Antimicrob Proteins. 2017 Mar;9(1):81-90 [PMID: 27914001]
  79. Front Microbiol. 2021 Dec 02;12:760444 [PMID: 34925269]
  80. Arch Microbiol. 2022 Oct 10;204(11):666 [PMID: 36214917]
  81. World J Microbiol Biotechnol. 2024 Jan 2;40(2):58 [PMID: 38165488]
  82. PLoS One. 2022 Aug 10;17(8):e0272702 [PMID: 35947630]
  83. Arch Microbiol. 2021 Mar;203(2):405-412 [PMID: 32965527]
  84. Biotechnol Lett. 2013 Jan;35(1):1-10 [PMID: 22798042]
  85. Environ Microbiol. 2014 Jul;16(7):2196-211 [PMID: 24308294]
  86. Plant Dis. 2022 Oct 9;: [PMID: 36210333]
  87. Appl Microbiol Biotechnol. 2022 Jun;106(12):4787-4799 [PMID: 35759038]

Word Cloud

Created with Highcharts 10.0.0A9controldiseaserotanalysisendophyticshowedbiologicalBiologicaleffectivefungalstudybiocontroltranscriptometotaleffectG1reachedFurthermoregenesDEGsenrichmentrelatedactivityCATNADPIntroduction:popularediblefungushigheconomicnutritionalvalueHowevercausedposeseriousthreatqualityyieldonewaysdiseasesMethodsresults:screenedmechanismstudied122strainsbacteriaantagonistic722%testscharacteristicsgenomicfeaturesanalyzedkeyantibioticgeneclustersdetectedScanningelectronmicroscopeSEMobservationaffectedmyceliumsporesfieldexperiments625%transcritomeprofilingprovidesevidencebicontrolmolecularlevel1246differentiallyexpressedidentifiedtreatmentgroupGeneOntologyGOlargenumberantioxidantKyotoEncyclopediaGenesGenomesKEGGmainpathwaysNitrogenmetabolismPentosePhosphatePathwayPPPMitogen-ActivatedProteinKinasesMAPKsignalpathwayAmongimportantcarbonicanhydraseCAH6S33_007248catalaseH6S33_001409tRNAdihydrouridinesynthaseDusBH6S33_001297-bindingproteinBPH6S33_000823foundconsiderablyenhancedPolyphenoloxidasePODSuperoxidedismutaseSODPhenylalanineammonialyasePALCatalaseConclusion:presentsinnovativeutilizationeffectivelycontrollingwilllayfoundationmayleadimprovementnewagentsproductionBiocontrolpotentialLecanicilliumaphanocladiiMorchellaesculenta

Similar Articles

Cited By