Serial platelet count as a dynamic prediction marker of hospital mortality among septic patients.

Qian Ye, Xuan Wang, Xiaoshuang Xu, Jiajin Chen, David C Christiani, Feng Chen, Ruyang Zhang, Yongyue Wei
Author Information
  1. Qian Ye: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  2. Xuan Wang: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  3. Xiaoshuang Xu: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  4. Jiajin Chen: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  5. David C Christiani: Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA.
  6. Feng Chen: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  7. Ruyang Zhang: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
  8. Yongyue Wei: Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. ORCID

Abstract

Background: Platelets play a critical role in hemostasis and inflammatory diseases. Low platelet count and activity have been reported to be associated with unfavorable prognosis. This study aims to explore the relationship between dynamics in platelet count and in-hospital morality among septic patients and to provide real-time updates on mortality risk to achieve dynamic prediction.
Methods: We conducted a multi-cohort, retrospective, observational study that encompasses data on septic patients in the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The joint latent class model (JLCM) was utilized to identify heterogenous platelet count trajectories over time among septic patients. We assessed the association between different trajectory patterns and 28-day in-hospital mortality using a piecewise Cox hazard model within each trajectory. We evaluated the performance of our dynamic prediction model through area under the receiver operating characteristic curve, concordance index (C-index), accuracy, sensitivity, and specificity calculated at predefined time points.
Results: Four subgroups of platelet count trajectories were identified that correspond to distinct in-hospital mortality risk. Including platelet count did not significantly enhance prediction accuracy at early stages (day 1 C-index   C-index: 0.713 0.714). However, our model showed superior performance to the static survival model over time (day 14 C-index   C-index: 0.644 0.617).
Conclusions: For septic patients in an intensive care unit, the rapid decline in platelet counts is a critical prognostic factor, and serial platelet measures are associated with prognosis.

Keywords

References

  1. Crit Care Med. 2002 Aug;30(8):1765-71 [PMID: 12163790]
  2. Crit Care. 2020 Feb 18;24(1):57 [PMID: 32070393]
  3. Ann Transl Med. 2018 Apr;6(7):121 [PMID: 29955581]
  4. Clin Infect Dis. 1997 Nov;25(5):1159-64 [PMID: 9402376]
  5. Arterioscler Thromb Vasc Biol. 2007 Aug;27(8):1687-93 [PMID: 17556654]
  6. J Intensive Care Med. 2013 Sep-Oct;28(5):268-80 [PMID: 22232201]
  7. Hematology Am Soc Hematol Educ Program. 2010;2010:135-43 [PMID: 21239783]
  8. BMC Infect Dis. 2023 Feb 7;23(1):82 [PMID: 36750777]
  9. Front Physiol. 2023 Mar 07;14:1064699 [PMID: 36960160]
  10. Chest. 2007 Jun;131(6):1735-41 [PMID: 17475637]
  11. Crit Care. 2020 Oct 14;24(1):607 [PMID: 33054834]
  12. Intensive Care Med. 2002 Nov;28(11):1619-24 [PMID: 12415450]
  13. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  14. Crit Care. 2004 Apr;8(2):R82-90 [PMID: 15025782]
  15. Nat Rev Immunol. 2017 Apr;17(4):233-247 [PMID: 28192415]
  16. Struct Equ Modeling. 2014;21(2):263-279 [PMID: 24729675]
  17. Crit Care Med. 2002 Apr;30(4):753-6 [PMID: 11940740]
  18. Crit Care Med. 2000 Dec;28(12):3843-6 [PMID: 11153624]
  19. Front Immunol. 2022 Aug 19;13:936662 [PMID: 36059447]
  20. Semin Hematol. 2013 Jul;50(3):239-50 [PMID: 23953341]
  21. Eur J Haematol. 2021 Mar;106(3):301-305 [PMID: 33191517]
  22. Blood. 2016 Jun 16;127(24):3062-72 [PMID: 26956172]
  23. Crit Care Med. 2000 Jun;28(6):1871-6 [PMID: 10890635]
  24. Hematology Am Soc Hematol Educ Program. 2017 Dec 8;2017(1):660-666 [PMID: 29222318]
  25. Kidney Int. 2008 Oct;74(8):994-7 [PMID: 18633346]
  26. Nat Med. 2007 Apr;13(4):463-9 [PMID: 17384648]
  27. Biostatistics. 2009 Jul;10(3):535-49 [PMID: 19369642]
  28. Anaesth Intensive Care. 2007 Dec;35(6):874-80 [PMID: 18084977]
  29. Blood. 2014 Dec 11;124(25):3781-90 [PMID: 25301709]
  30. Discov Oncol. 2023 Jan 25;14(1):10 [PMID: 36695938]
  31. Crit Care Med. 1990 Aug;18(8):801-6 [PMID: 2379391]
  32. Eur J Epidemiol. 2020 Mar;35(3):205-222 [PMID: 32140937]
  33. NEJM Evid. 2023 Jun;2(6):EVIDoa2300034 [PMID: 38320130]

Word Cloud

Created with Highcharts 10.0.0plateletcountmodelsepticpatientspredictionmortality0in-hospitalamongdynamictimetrajectoryC-indexcriticalassociatedprognosisstudyriskIntensivelatentclasstrajectoriesperformanceaccuracyday C-index:careBackground:PlateletsplayrolehemostasisinflammatorydiseasesLowactivityreportedunfavorableaimsexplorerelationshipdynamicsmoralityprovidereal-timeupdatesachieveMethods:conductedmulti-cohortretrospectiveobservationalencompassesdataeICUCollaborativeResearchDatabaseeICU-CRDMedicalInformationMartCareIVMIMIC-IVdatabasejointJLCMutilizedidentifyheterogenousassessedassociationdifferentpatterns28-dayusingpiecewiseCoxhazardwithinevaluatedareareceiveroperatingcharacteristiccurveconcordanceindexsensitivityspecificitycalculatedpredefinedpointsResults:FoursubgroupsidentifiedcorresponddistinctIncludingsignificantlyenhanceearlystages1713714Howevershowedsuperiorstaticsurvival14644617Conclusions:intensiveunitrapiddeclinecountsprognosticfactorserialmeasuresSerialmarkerhospitalDynamicmedicineJointPlateletSepsis

Similar Articles

Cited By